ASML

Doing obvious & simple things better

Mark Bergkotte

Head Delivery Operations - Business Line Mature Products and Services

15th of November 2018

Question: how many chips are expected to be produced in 2018?

Public Slide 2 27 November 2018

A. 1,000,000,000 (1 billion) chips

B. 10,000,000,000 (10 billion) chips

C. 100,000,000,000 (100 billion) chips

D. 1,000,000,000 (1 trillion) chips

Question: how many chips are expected to be produced in 2018?

Public Slide 3 27 November 2018

A. 1,000,000,000 (1 billion) chips

- B. 10,000,000,000 (10 billion) chips
- C. 100,000,000,000 (100 billion) chips

D. 1,000,000,000,000 (1 trillion) chips

130 chips for each man, woman and child on earth

ASML makes the machines for making those chips

Public Slide 4 27 November 2018

- Lithography is the critical tool for producing chips
- All of the world's top chip makers are our customers

A chip is made of dozens of layers

Public Slide 5 27 November 2018

Since 1984, ASML developed multiple generations lithography systems

ASML

Public Slide 6

27 November 2018

End of service

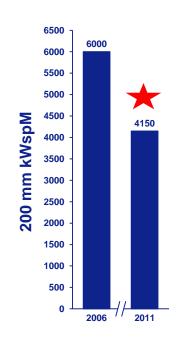
Mature Products

DUV

EUV

PAS 2000

PAS 5500 Steppers/Scanners



Wafer size (200→300mm), throughput increase, resolution improvement

We noticed a steady decline in 200mm wafer starts between 2006 and 2011

Public Slide 7 27 November 2018

- Introduction of 300mm technology led to decline in 200mm wafer starts.
 - Customers transitioned their high volume products to 300mm
- This triggered ASML to declare the end-of-service roadmap by 2022 for its mature systems

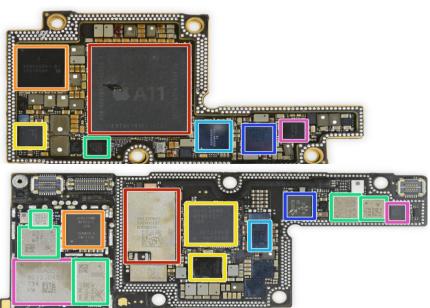
Question: how many chips does an iPhone X contain?

Public Slide 8 27 November 2018

A. 5 chips

B. 10 chips

C. 20 chips

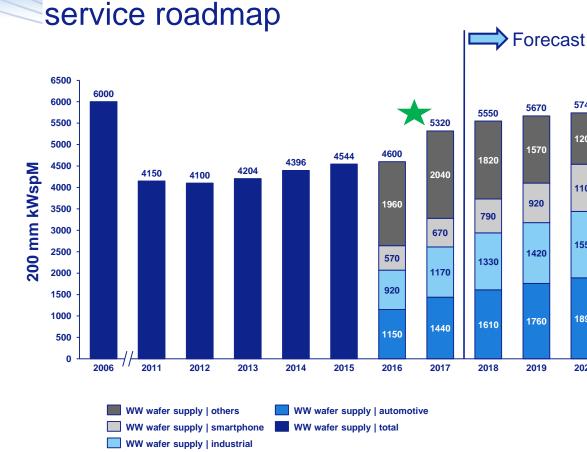

D. 50 chips

An iPhone X contains 20 chips, of which 18 are produced on 200mm wafers (our mature products)

ASML

Public Slide 9 27 November 2018

iPhone X Teardown*


- Apple APL1W72 A11 Bionic SoC layered over SK Hynix H9HKNNNDBMAUUR 3 GB LPDDR4x RAM
- Apple 338S00341-B1
- TI 78AVZ81
- NXP 1612A1—Likely an iteration of the 1610 tristar IC
- Apple 338S00248 audio codec
- STB600B0
- Apple 338S00306 power management IC
- Apple USI 170821 339S00397 WiFi / Bluetooth module
- Qualcomm WTR5975 gigabit LTE transceiver.
- Qualcomm MDM9655 Snapdragon X16 LTE modem and PMD9655 PMIC. But Apple is dualsourcing the modem and TechInsights found an Intel XMM7480 (PMB9948) in their A1901 model. Even though the modem is capable of it, Apple isn't supporting Gigabit speeds with the Qualcomm part.
- Skyworks 78140-22 power amplifier, SKY77366-17 power amplifier, S770 6662, 3760 5418 1736
- Broadcom BCM59355 touch controller
- NXP 80V18 PN80V NFC controller module
- Broadcom AFEM-8072, MMMB power amplifier module

Source: ifixit.com

Growing customer demand resulted in extension of our

Public Slide 10 27 November 2018

Triggered by the growth in automotive, smartphones and industrial applications, we extended our service roadmap to 2030

5740

1200

1100

1550

1890

2020

5670

1570

920

1420

1760

2019

Growing customer demand resulted in extension of our service roadmap, triggering a revision of our supply chain

Public Slide 11 27 November 2018

Triggered by the growth in automotive, smartphones and industrial applications, we extended our service roadmap to 2030

In order to retain and best serve our customers, we want to assure our supply chain is "future-proof"

We discovered several mismatches in our supply chain set-up with regard to customer & engineers' expectations

ASML

Public Slide 12

27 November 2018

Product offering

Ordering process and communication

Supply chain set-up

- STANDARD SHIPMENT = Typical between fourteen (14) ninety (90) days
- = ≤2 business days for parts stocked continentally & ≤5 business days for parts not stocked continentally

Complex & time-consuming order process Customer and engineers complaining about long lead-times and unclarity on ETA

Scattered infrastructure with too many intra-local shipments

Unclarity on lead-times in our Terms & Conditions

Result: frustrated customers & engineers, while operating a costly supply chain

We took an end-to-end approach in turning around our supply chain

ASML

Public Slide 13 27 November 2018

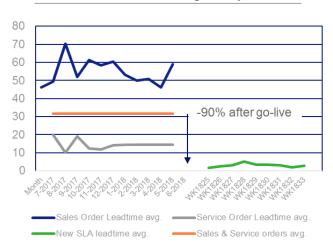
Product offering

Ordering process & communication

- Lead-time commitment based on customer requirements and standard practice at 3PL
- Deliver >96% of all demand within 3 business days
- Late cut-off times and early A.M next day delivery if needed
- Add-on services on top

- Easy ordering, any place / any time
- Customer specific pricing and conditions
- Order status and history
- Communication of ETA
- Secure login via 2-factorauthentication

- Consolidation of inventory and plan for all demand
- From complex order allocation to FIFO
- Logistics supplier responsible for order intake, warehousing and freight
- Optimized internal processes; automation and standardization
- Lean organization


Results: lead times & costs have come down, customer satisfaction increased

ASML

Public Slide 14 27 November 2018

Results: order lead time & cost

Order Leadtime USA, average in days *

~24% cost reductions (freight, warehousing and headcount)

Results: improved customer satisfaction

• Customer quote: "This is really good.
We ordered a part in your portal at 5.30
p.m. and it is scheduled to early a.m.
delivery tomorrow"

• Engineer quote: "yesterday we ordered a part for a system down at a customer in Canada. The part arrived today. This never happened before and will help us win back business!"


In case lead-times are not met, we learn from our mistakes. We will globally roll-out this new approach

ASML

Public Slide 15 27 November 2018

Closed learning-loop

 100% root-cause analysis of late deliveries, including follow-up actions to mitigate risks

Next steps

- Enhance web-portal functionalities (e.g. customer pre-paid balance and easy returns processing)
- Roll-out in EU H1 2019
- Roll-out in Asia H2 2019

Public Slide 10 27 November 2018

- 1. When 99% of ASML is focused on introduction of new lithography systems and keeping them running at all cost, it becomes a challenge to change general supporting processes
- 2. Coming from a complex set-up; the easier the solution you want to implement, the more processes you have to deal with
- 3. Our ambition of outsourcing activities is larger then what we have now outsourced. We need to further standardize our processes and then see if this matches the scope of our logistics partner

To be continued....

ASML