

#### **Spare Parts Management**

- What's different? -

# **Complex SPM environment**Spare parts logistics vs. Production logistics



| Parameter                      | Production logistics   | Spare parts logistics                                 |  |  |  |  |
|--------------------------------|------------------------|-------------------------------------------------------|--|--|--|--|
| Strategy                       | Just in Time           | Just in Case                                          |  |  |  |  |
| Demand pattern                 | Predictable            | Unpredictable                                         |  |  |  |  |
| Response                       | Plannable              | Asap                                                  |  |  |  |  |
| Parts                          | Limited                | 15 to 20 times as much                                |  |  |  |  |
| Assortment                     | Uniform                | Many different types of parts                         |  |  |  |  |
| Objective inventory management | Maximise turnover      | Effective allocation inventory based on service level |  |  |  |  |
| Return logistics               | Does not occur         | Rotables, defects and scrap                           |  |  |  |  |
| Performance indicator          | Stock availability     | Uptime of the system                                  |  |  |  |  |
| Stock turn                     | 6 to 50 times per year | 1 to 4 times per year                                 |  |  |  |  |

### Influence of logistics on asset availability



Managing the operational availability of a capital asset\*:

**Mean Time Between Maintenance Actions** 

Operational availability =

Mean Time Between + Mean Logistics + Mean Time Maintenance Actions + Delay Time + To Repair



<sup>\*</sup> Several definitions exist

### **Spare parts management framework**





#### **Assortment strategy (1)**



#### **Assortments:**



#### **Collection of assortments**

#### Technical assortment

Assortment that potentially will be used for maintenance (configuration items)

#### Logistics assortment

Assortment of regular used **or** at least plannable demand (not necessarily on the shelf)

#### Inventory assortment

Assortment for which stock is needed from client/operations or economical perspective

### **Assortment strategy (2)**



| Assortment strategy      | Description                                                             | Technical<br>data known | Purchase<br>data known | Inventory<br>data known | Time spent |  |
|--------------------------|-------------------------------------------------------------------------|-------------------------|------------------------|-------------------------|------------|--|
| BTO = Buy To Order       | Assortment not active, from a logistics perspective                     | <b>√</b>                | 1                      | -                       | 5%         |  |
| DTO = Deliver To Order   | Logistics assortment<br>which IS NOT held in<br>stock (non stock items) | ✓                       | <b>√</b>               | -                       | 15%        |  |
| DFS = Deliver From Stock | Logistics assortment<br>which IS held in stock<br>(stock items)         | ✓                       | <b>√</b>               | <b>√</b>                | 80%        |  |

#### **Introduction inventory control**



The inventory control model we use depends on the underlying demand characteristics. We distinguish:





#### **Deterministic demand:**

- Demand is known
- Assumption: no deviation in demand
- Mainly planned maintenance (or production demand)

#### Stochastic demand:

- Uncentainty in demand is expressed in a mean and standard deviation
- Mainly corrective demand, failure rate is difficult to predict

#### **Demand driven planning**



**Deterministic demand:** demand is known in advance or can be postponed and should be fulfilled "just in time".



### **Demand driven planning**





#### **Requirements MRP:**

- Set lead times
- Required materials are included in Bill Of Material (BOM)
- Requirements are known in advance, at least before the length of the lead time.

#### **Application MRP:**

- Parts with known requirements from planned maintenance jobs
- "Buy-to-order" and "deliver-to-order" parts
- Non critical parts for which the repair of a defect can be postponed long enough

|    | MRP Level 0             |          |    |     |    |    |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|----|-------------------------|----------|----|-----|----|----|-----|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|    | Safety stock            | 8        |    |     |    |    |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|    | On hand                 | 80       |    |     |    |    |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|    | Order policy            | Discrete |    |     |    |    |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|    | MOQ                     | 50       |    |     |    |    |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|    | Lead time               | 3        |    |     |    |    |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|    | Daviad                  |          | 1  | 2   |    | 4  |     | 0   | 7    |      | 0    | 40   | 44   | 40   | 40   | 4.4  | 45   | 40   | 47   | 40   | 10   | 20   |
|    | Period                  |          | 1  | 2   | 3  | 4  | 5   | 6   | - /  | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   |      | _    |
| ဟ  | Forecast                |          | 25 | 26  | 27 | 28 | 29  | 30  | 31   | 32   | 33   | 34   | 35   | 36   | 37   | 38   | 39   | 40   | 41   | 42   | 43   | 44   |
| ΑP | Orders                  |          | 0  | 0   | 10 | 0  | 0   | 40  | 25   | 5    | 40   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|    | Gross reqs              |          | 25 | 26  | 27 | 28 | 29  | 40  | 31   | 32   | 40   | 34   | 35   | 36   | 37   | 38   | 39   | 40   | 41   | 42   | 43   | 44   |
|    | Scheduled receipts      |          | 0  | 20  | 0  | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|    | Projected stock on hand | 80       | 55 | 49  | 22 | -6 | -35 | -75 | -106 | -138 | -178 | -212 | -247 | -283 | -320 | -358 | -397 | -437 | -478 | -520 | -563 | -607 |
| ۵  | Planned stock           | 80       | 55 | 49  | 22 | 44 | 15  | 25  | 44   | 12   | 22   | 38   | 53   | 17   | 30   | 42   | 53   | 13   | 22   | 30   | 37   | 43   |
| MR | Net reqs                |          | 0  | 0   | 0  | 14 | 0   | 33  | 14   | 0    | 36   | 20   | 5    | 0    | 28   | 16   | 5    | 0    | 36   | 28   | 21   | 15   |
|    | Planned order receipts  |          | 0  | 0   | 0  | 50 | 0   | 50  | 50   | 0    | 50   | 50   | 50   | 0    | 50   | 50   | 50   | 0    | 50   | 50   | 50   | 50   |
|    | Planned order release   |          | 50 | 0   | 50 | 50 | 0   | 50  | 50   | 50   | 0    | 50   | 50   | 50   | 0    | 50   | 50   | 50   | 50   | #N/B | #N/B | #N/B |
|    | ATP                     |          | 80 | 100 | 90 |    |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|    |                         |          |    |     |    |    |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

### **Maintenance impacting SPM**



#### Types of maintenance

| Types of maintenance          | Maintenance & spare parts management strategy                                                                                                                                                          |  |  |  |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Preventive maintenance        | <ul> <li>Plan maintenance as much as possible ahead</li> <li>Standardize maintenance as much as possible incl. required parts</li> <li>Deliver to Order (DTO), unless economically feasible</li> </ul> |  |  |  |  |
| Corrective<br>maintenance     | <ul> <li>Deliver from Stock (DFS)</li> <li>Make adequate supply decisions by an adequate prediction</li> <li>Differentiate in service levels based on criticality and cost</li> </ul>                  |  |  |  |  |
| Modifications/<br>Turnarounds | <ul> <li>Plan the entire project, including ordering items</li> <li>Separate incidental demand and regular demand</li> </ul>                                                                           |  |  |  |  |
| Component<br>maintenance      | <ul> <li>Good coordination between maintenance and stock control</li> <li>Deliver from Stock (DFS)</li> </ul>                                                                                          |  |  |  |  |

### **Demand frequency distribution (1)**





Shows the probability of a future request of 24 pieces in the next period = 4%

#### **Demand frequency distribution (2)**





Shows the probability of a future request of 24 pieces <u>or less</u> in the next period = 96 %

- To achieve a stock availability of 75%, 22 pieces must be put on stock!
   (lead time = 1 period)
- To achieve a stock availability of 90%, 23 pieces must be put on stock!
   (lead time = 1 period)

How can we approximate this demand statistically?

## **Normal demand distribution** *Example*



We would like to have a service level of 90%, what stock level do we need?



| Service level (%) | 90   |
|-------------------|------|
| k-factor          | 1.28 |



Stock level = 
$$\mu + k * \sigma$$
  
= 20.04 + 1.28 \* 2.51

By using the normal distribution, the stock level should be **23.25 pieces** in order to achieve a service level of 90%.

### **Application normal distribution (1)**





The normal distribution does not always fit the actual demand best



Problem areas:



### **Application normal distribution (2)**



#### Normal distribution is well applicable if we have:

- Many hits (> 12 per year, is steady)
- OR few periodes with zero demand
- OR high stock availability (> 90%)
- OR  $\sigma / \mu < 1$

If these criteria are not met, the normal distribution does not fit well. Especially for slow movers!



#### Overview demand forecasting





Demand forecasting based on demand history



Demand forecasting based on engineering information



Demand forecasting based on planned maintenance



Combined demand forecasting

#### Reorder point planning (1)

Lead time





Lead time

Lead time

### Reorder point planning (2)

Inventory models





#### **Assortment strategy**

#### Spare parts management strategies





Enhance demand predictability

 Reduce variation in supply lead times

 Medium/high stock availability

#### **LEAN**

- Management by exception
- Fully automated process
- Very high stock availability

- Adequate modeling
- Try to scale up
- Apply risk management
- Low stock availability except for critical parts

#### **JUST IN CASE**

- Accept high safety stock
- Speed up phase outs
- High stock availability

**WHOLESALE** 

**WHOLESALE (CLEAN)** 

Demand frequency

### Classification & differentiation (1)



Differentiating stock availability

Situation <u>WITHOUT</u> differentiated stock availability



### Classification & differentiation (2)



Differentiating stock availability

Situation <u>WITH</u> differentiated stock availability



### Classification & differentiation (3)



Differentiating stock availability

|       | High | Stock availability 80% # part requests 250 | Stock availability 60% # part requests 50  |
|-------|------|--------------------------------------------|--------------------------------------------|
| Price | Том  | Stock availability 99% # part requests 600 | Stock availability 80% # part requests 100 |
|       |      | High                                       | Low                                        |

**Demand frequency** 

## What is the overall stock availability?

An overall stock availability of 90% can be achieved by differentiating, using less working capital.

#### **KPI Management**



