Spare Parts Management

- What's different? -

Complex SPM environment Spare parts logistics vs. Production logistics

Parameter	Production logistics	Spare parts logistics
Strategy	Just in Time	Just in Case
Demand pattern	Predictable	Unpredictable
Response	Plannable	Asap
Parts	Limited	15 to 20 times as much
Assortment	Uniform	Many different types of parts
Objective inventory management	Maximise turnover	Effective allocation inventory based on service level
Return logistics	Does not occur	Rotables, defects and scrap
Performance indicator	Stock availability	Uptime of the system
Stock turn	6 to 50 times per year	1 to 4 times per year

Influence of logistics on asset availability

Managing the operational availability of a capital asset*:

Mean Time Between
Maintenance Actions
Operational availability =

Mean Time Between
Maintenance Actions
:---:
Delay Time
:---:
To Repair

"\# assets waiting for parts"

[^0]
Spare parts management framework

Assortment strategy (1)

Assortments:

Collection of assortments

Technical assortment

Assortment that potentially will be used for maintenance (configuration items)

Logistics assortment

 Assortment of regular used or at least plannable demand (not necessarily on the shelf)Inventory assortment
Assortment for which stock is needed from client/operations or economical perspective

Assortment strategy (2)

Assortment strategy	Description	Technical data known	Purchase data known	Inventory data known	Time spent
BTO = Buy To Order	Assortment not active, from a logistics perspective	\checkmark	-	-	5\%
DTO = Deliver To Order	Logistics assortment which IS NOT held in stock (non stock items)	\checkmark	\checkmark	-	15\%
DFS $=$ Deliver From Stock	Logistics assortment which IS held in stock (stock items)	\checkmark	\checkmark	\checkmark	80\%

Introduction inventory control

The inventory control model we use depends on the underlying demand characteristics. We distinguish:

Deterministic demand:

- Demand is known
- Assumption: no deviation in demand
- Mainly planned maintenance (or production demand)

Stochastic demand:

- Uncentainty in demand is expressed in a mean and standard deviation
- Mainly corrective demand, failure rate is difficult to predict

Demand driven planning

Deterministic demand: demand is known in advance or can be postponed and should be fulfilled "just in time".

Demand driven planning
 Material Requirements Planning (MRP)

Requirements MRP:

- Set lead times
- Required materials are included in Bill Of Material (BOM)
- Requirements are known in advance, at least before the length of the lead time.

Application MRP:

- Parts with known requirements from planned maintenance jobs
- "Buy-to-order" and "deliver-to-order" parts
- Non critical parts for which the repair of a defect can be postponed long enough

	MRP Level 0																					
	Safety stock	8																				
	On hand	80																				
	Order policy	Discrete																				
	MOQ	50																				
	Lead time	3																				
	Period		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Forecast		25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
$\frac{1}{\Sigma}$	Orders		0	0	10	0	0	40	25	5	40	0	0	0	0	0	0	0	0	0	0	0
	Gross reqs		25	26	27	28	29	40	31	32	40	34	35	36	37	38	39	40	41	42	43	44
	Scheduled receipts		0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Projected stock on hand	80	55	49	22	-6	-35	-75	-106	-138	-178	-212	-247	-283	-320	-358	-397	-437	-478	-520	-563	-607
	Planned stock	80	55	49	22	44	15	25	44	12	22	38	53	17	30	42	53	13	22	30	37	43
${ }_{5}^{\text {r }}$	Net reqs		0	0	0	14	0	33	14	0	36	20	5	0	28	16	5	0	36	28	21	15
	Planned order receipts		0	0	0	50	0	50	50	0	50	50	50	0	50	50	50	0	50	50	50	50
	Planned order release		50	0	50	50	0	50	50	50	0	50	50	50	0	50	50	50	50	\#N/B	\#N/B	\#N/B
	ATP		80	100	90																	

Maintenance impacting SPM

Types of maintenance

Types of maintenance	Maintenance \& spare parts management strategy
Preventive maintenance	- Plan maintenance as much as possible ahead - Standardize maintenance as much as possible incl. required parts - Deliver to Order (DTO), unless economically feasible
Corrective maintenance	- Deliver from Stock (DFS) - Make adequate supply decisions by an adequate prediction - Differentiate in service levels based on criticality and cost
Modifications/ Turnarounds	- Plan the entire project, including ordering items - Separate incidental demand and regular demand
Component maintenance	- Good coordination between maintenance and stock control - Deliver from Stock (DFS)

Demand frequency distribution (1)

Shows the probability of a future request of 24 pieces in the next period $=4 \%$

Demand frequency distribution (2)

Shows the probability of a future request of 24 pieces or less in the next period $=96 \%$

- To achieve a stock availability of 75%, 22 pieces must be put on stock! (lead time $=1$ period)
- To achieve a stock availability of 90%, 23 pieces must be put on stock! (lead time $=1$ period)

How can we approximate this demand statistically?

Normal demand distribution
 Example

We would like to have a service level of 90%, what stock level do we need?

$$
\begin{aligned}
\mu & =20.04 \\
\sigma & =2.51
\end{aligned}
$$

$$
\begin{aligned}
\text { Stock level } & =\mu+\mathrm{k} * \sigma \\
& =20.04+1.28 * 2.51 \\
& =23.25
\end{aligned}
$$

By using the normal distribution, the stock level should be 23.25 pieces in order to achieve a service level of 90%.

Application normal distribution (1)

Application normal distribution (2)

Normal distribution is well applicable if we have:

- Many hits (> 12 per year, is steady)
- OR few periodes with zero demand
- OR high stock availability (> 90\%)
- OR $\sigma / \mu<1$

If these criteria are not met, the normal distribution does not fit well. Especially for slow movers!

Overview demand forecasting

Demand forecasting based on demand history

Demand forecasting based on engineering information

Demand forecasting based on planned maintenance

Combined demand forecasting

Reorder point planning (1)

Inventory control with a "sawtooth"

——— = Physical stock

- - - = Stock position

Reorder point planning (2)

Inventory models

Assortment strategy
 Spare parts management strategies

Availability

- Enhance demand predictability
- Reduce variation in supply lead times
- Medium/high stock availability
Unit price

Classification \& differentiation (1)
 Differentiating stock availability

Situation WITHOUT differentiated stock availability

Classification \& differentiation (2)
 Differentiating stock availability

Situation WITH differentiated stock availability

Classification \& differentiation (3)
 Differentiating stock availability

Demand frequency

What is the overall stock availability?

$$
\begin{aligned}
& \text { Stock availability }_{\text {overall }}= \\
& ((600 * 99 \%)+(100 * 80 \%)+ \\
& (250 * 80 \%)+(50 * 60 \%)) / 1000 \\
& =904 / 1000 \\
& =\mathbf{9 0 . 4 \%}
\end{aligned}
$$

An overall stock availability of 90\% can be achieved by differentiating, using less working capital.

KPI Management

[^0]: * Several definitions exist

