

Agenda

- Welcome to Component Services
- Aircraft Maintenance Program
- Big Data & component Maintenance
- The Case

Welcome at Component Services

- In what world do we operate?
- Who are we?
- What do we do?
- What products do we offer?

In what world do we operate?

Royal Dutch Airlines

Trends urging to speed-up E&M strategy

Airline / MRO dynamics:

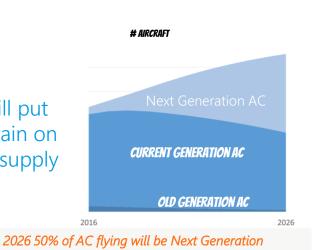
- Development fleet
- Growth MRO market

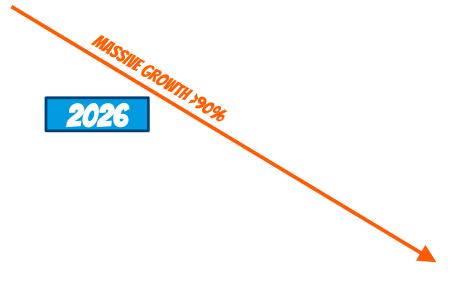
MRO market:

- Main MRO players & Dynamics
- Highlights of competition

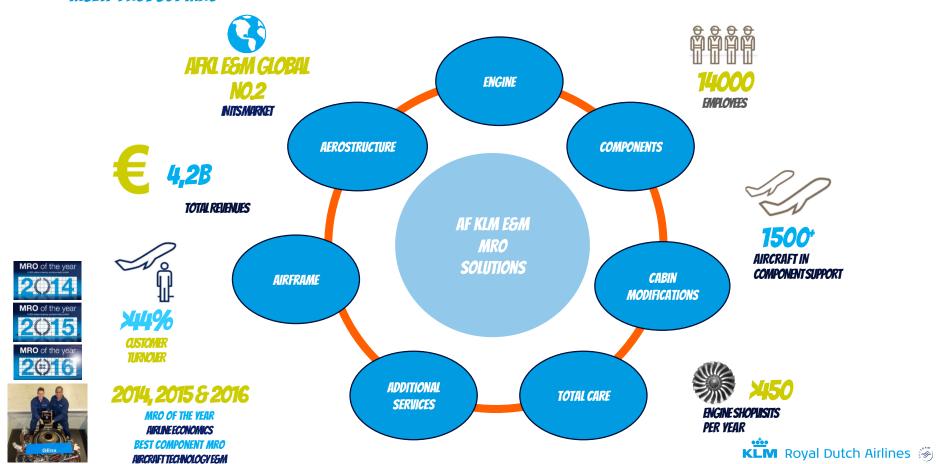
AFKL Engineering & Maintenance:

- **Ambitions & Products**
- KLM E&M strategic priorities 2018-2023





Worldwide Fleet Dynamics Fleet continue to grow and shifts towards Asia


Production demands will put huge constrain on OEM-OAM supply chains

Who are we? Royal Dutch Airlines

AIR FRANCE KLM ENGINEERING & MAINTENANCE 2017 MULTI-PRODUCT MRO

Our Network

Welcome at Component Services

"In 2020 we are a **wordleader** in Component Availability for the Boeing 787, 737 and we excel in Closed Loop and Time & Material MRO for selected technologies by being the **best performing, most innovative** and **customer-centric** provider"

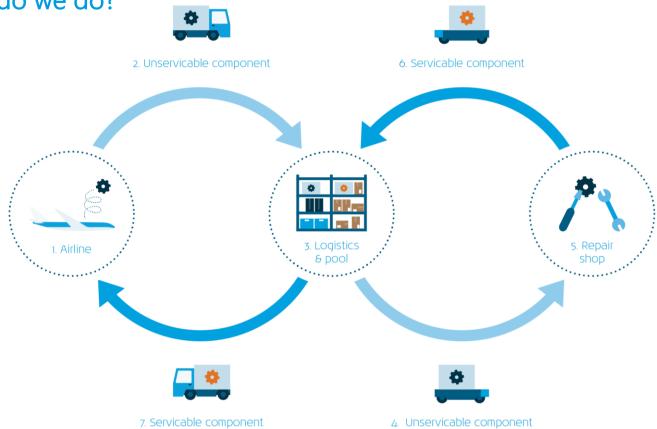
2 Logistics Centers: AMS, MIA, KUL 7 Repair centers in AMS

#Packages / year in LC

A worldwide footprint of 787 Customers

787 APU

*



A worldwide footprint of 737 Customers

What do we do? Royal Dutch Airlines

What do we do?

What products do we offer? Royal Dutch Airlines

• What products do we offer?

Pool (different part nr)	Close Loop (same part nr)	
Pool	Close Loop	T&M Sales
Power by the Hour (PBH)	000	
External ver	ndors possible	Only in-house

Aircraft Maintenance Program (AMP)

MSG-3 and beyond

Introduction

Objective of maintenance:
 Safe and economical operation of A/C

Hard Time

On Condition Item

A primary maintenance process requiring repetitive inspection or test to determine the condition of units, systems or portions of structure to assure continued serviceability. Corrective action is taken when required by item condition as determined by analysis of inspection and/or test results.

Condition Monitoring (CM). .

This process is for systems, components, or appliances that have neither HT nor OC maintenance as their primary maintenance process. It is accomplished by appropriate means available to an operator for finding and solving problem areas.

The user must control the reliability of systems or equipment based on knowledge gained by the analysis of failures or other indications of deteriorations

Aircraft Maintenance Program

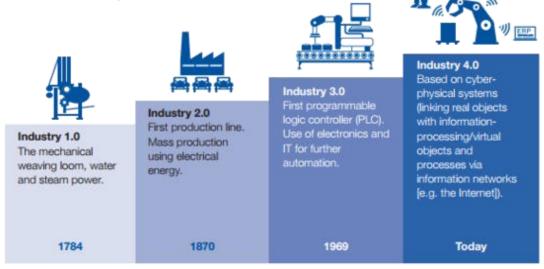
- Aircraft Manufacturer provides MRB-/MPD-document (Maintenance Review Board/Maintenance Plannign Data)
- MSG guidelines used to analyze aircraft for maintenance.
- MSG-1/2 was used for 737PG and 747-100 thru 300
- MSG-3 is being used for the 737 NG, 737PG, 767, 777 and 747-400

- MSG-1MS Gettorn-W"vssuMSG-3
 component-contered maintenance to fail?
- MSG-3: "Top-down" result:
 - aircraft/system-centered mainteneance
 - >> what caused the system *function* to fail?
 - >> what are the consequences?
 - (Safety/Operational/Economic)
 - **Result: fewer specific Component Maintenance Tasks**



NEXT STEP

• BIG DATA



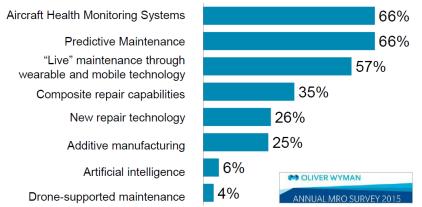
Big Data at KLM Engineering & Maintenance

The Revolution

■ Industry 4.0 Paradigm is upon us!

- This might not sound new to you... but it is to "us"
 - Big Data, Internet of Things, Augmented Reality, 3D printing...
 - What to do with all that Data...?

Predictive Maintenance


■ #1 Development in Aircraft Maintenance

- Predict and Anticipate Maintenance Events
- Reducing airline operational disturbances
- Optimizing maintenance operations

■ Many challenges to overcome

- Data collection and ownership discussion (Airline, MRO, OEM,...)
- Model and algorithm development
- Development of Decision support tools that integrate

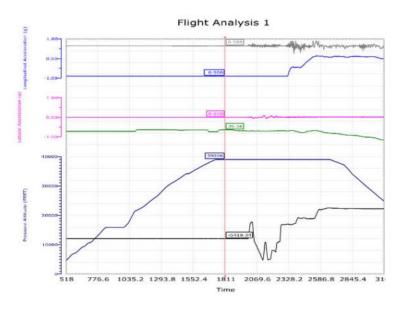
Most prominent new technologies by 2020 (All respondents)

Predictive Maintenance Data science Checking the "ECG" of technical systems

flight

Big Data Tooling time

Issue detected: Broken membrane inside cooler valve



The explosion of aircraft data

Aircraft generate more and more data:

- 164986 parameters on a 787
- "A 787 flight can generate 500GB of data"

ACMS "Aircraft Condition Monitoring System" Data:

- Feed the aircraft control systems and cockpit
- Safety & Maintenance events are reported to OCC/MCC (ACARS)
- Full flight parameters are recorded and downloaded after each flight
- Depending the recorder; up to 2500 parameters for KLM 787
 - 100.000.000 data points per flight

Prognos

Prognos: Big Data tool

- Developed by AF KL IT departments
- Making use of Big Data Technology

Dashboard Maintenance Control Center:

AF KL Prognos:

Agenda

- Set Up
- Operational Information / Challenges
- The Case

Set Up

- KLM supports over 787 aircraft World Wide customers
- Customers have a small amount of components to support normal operation
- KLM Pool stock at 3 locations
 - SPL
 - Miami
 - Kuala Lumpur
- Repair is performed in house (Air France Industries and KLM) and at suppliers
- At various locations local representatives are available
 - Depends on airline requirements, phase of operation, etc

Set Up

- Majority of customers have small fleets
 - Information sharing is critical
 - Support of vendors and Boeing is available but subject to commercial interests
 - Help is appreciated in the team of customers
 - Special website and meetings in place
- For 787 more correlation between aircraft and components as compared to other aircraft
 - Often software related
- Technology leap from 777 to 787 is significant
 - Revolution if compared to competitors philosophy
- 787 assembly is Boeing. Design and build is vendors & Boeing.
 - First Boeing aircraft according this set up

■ Main Battery / APU Battery

Challenge

■ How to digest all the technical information by logistic people?

Customer different maintenance

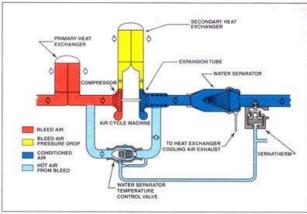


Figure 14-35. The air-cycle air conditioner utilizes bleed air to heat and cool the cabin.

Challenge

■ AHM data could reduce customer cost and predict failures however CS cost could rise

The case

■ In which way a logistical supply chain can provide added value to the customer while reducing the pool cost and the cost of the operator.

