

Introduction

- Simulation Engineer at KSE Process Technology
- Studied at TU/e
 - Industrial Engineering
 - Manufacturing Systems Engineering
- Master's thesis at Lely, Maassluis

Content

Case study results

Applicability for other companies

Lely

Farming automation solutions

Problem statement

- Availability systems important for farmers
- From reactive to more preventive, service-oriented maintenance strategy
- Maintenance schedules based on experience and gut feeling
- Not based on theoretical framework, nor explicitly defined rules
- New systems contain large amount of uncertainty

 "How to create an optimal preventive maintenance concept for new systems?"

Development of a maintenance concept

Involves:

- 1. Identifying maintenance objectives
- 2. Conducting technical analysis of system failure behavior
- 3. Selecting maintenance policies
- 4. Optimization policy parameters
- 5. Implementation and evaluation
- 6. Feedback

Covered in the thesis

Source: (Waeyenbergh and Pintelon, 2002, 2004, 2009)

Maintenance objectives

What are we trying to achieve with the PM concept?

- 1. Maximize availability
- 2. Minimize maintenance costs
- 3. Minimize operational impact

Technical analysis

- Technical analysis: which behavior are we trying to prevent?
- How is our system / components expected to fail?

Maintenance policy selection

- Policy selection: how can we prevent failure?
- Can we monitor the condition?
 - → Condition Based Maintenance
- Does the component likely fail after a certain time/ usage?
 - → Age-Based / Usage-based Maintenance
- Does the failure have severe consequences?
 - → Redesign required
- Are the consequences of failure acceptable?
 - → Failure-based maintenance
- If not → redesign is required

Optimization model

- Difficult to translate downtime (availability) into cost
 - Customer satisfaction
 - Animal health
 - Product and company image
- Combination of:
 - Zhu (2015): cost optimization
 - Peng and Zhu (2017): downtime optimization
- Scheduled downs for shared PM
- Unscheduled downs for Corrective Maintenance

Model input - Setup

Setup preventive maintenance on system

- Downtime:
 - Create safe working environment
 - Perform routine inspections
 - Perform tests / calibrations before putting back in service
- Cost:
 - Driving cost
 - Labor cost

Model input - downtime

Component downtime:

- Preventive maintenance:
 - Replacement time
- Corrective maintenance:
 - Time needed to react to a service call
 - Driving time
 - Troubleshooting time
 - Replacement time
 - Extra replacements due to collateral damage

Model input - costs

Component cost:

- Preventive maintenance:
 - Spare part cost
 - Labor cost technician
 - Production loss
- Corrective maintenance:
 - PM costs
 - + Extra driving costs
 - + Emergency shipment
 - + Possible collateral damage

Model input – lifetime distribution

- Component lifetime distribution:
- Pool all available information:
 - Historical failure data
 - Similar components in different systems
 - Supplier recommendations
 - Test & validation phase data
 - Engineering reliability knowledge
 - Estimates experts

Lifetime (years) →

Case study results

- Each "+" represents a potential maintenance concept
- τ: Interval between two PM service visits
- Model balances PM and CM
- 6-month interval optimal
- Multiple optimal concepts > Pareto optimal

Applicability for other companies

- Decision tree can help identify component maintenance policy
- Large number of components (> 100)
- Can be extended with other single component models
- Identify and quantify conflicting objectives
- Differentiation in maintenance concepts

Summary

- 1. Deriving maintenance objectives
- 2. Technical analysis of system failure behavior
- 3. Selecting maintenance policy per component
- 4. Optimize policy
- Select maintenance concept(s)

Thank you! Questions?

