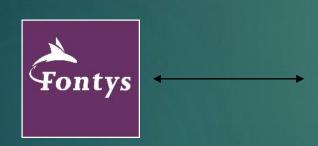
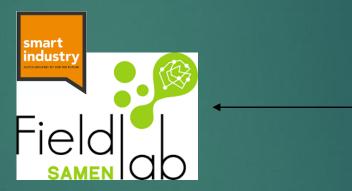
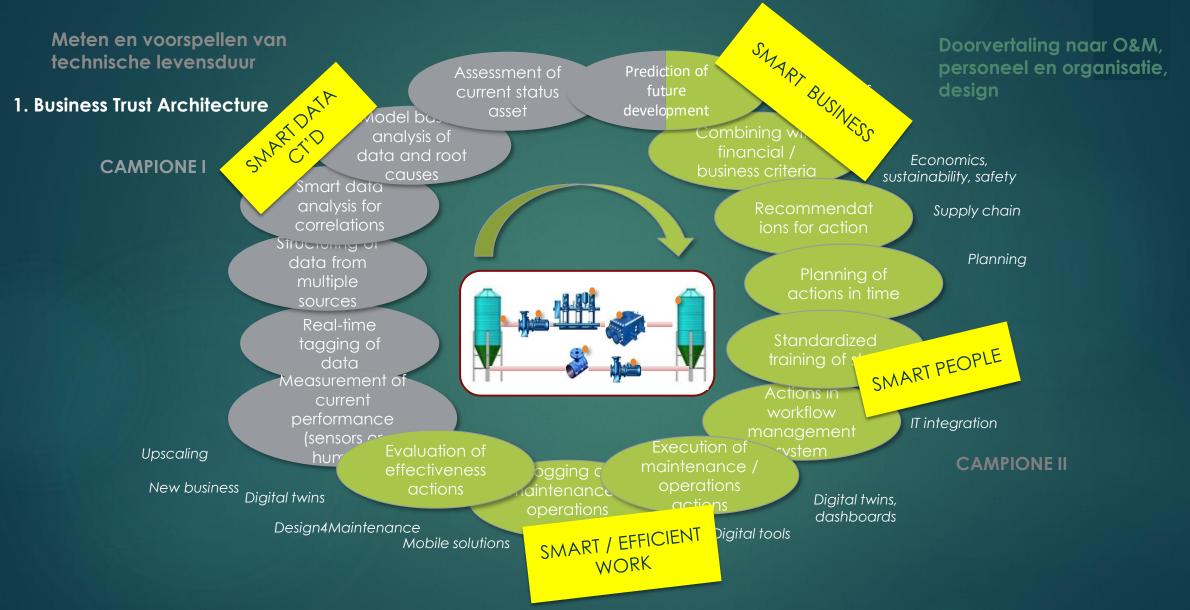
Architecture Principles and Digital Trust in practice


DR. YVONNE KIRKELS (FONTYS HOGESCHOLEN & OPEN UNIVERSITEIT)


JAN HARMSEN AND PAUL COBBEN (KPN)

17 OKTOBER 2023

Research by many partners



FieldlabSAMEN: Areas of Applied Science

The data-enrichment cycle in Condition-Based Maintenance

Literature

- When just starting with open service innovation, there is the question of which information can be shared and which information must be protected (Bogers, 2011).
- Create digital trust to develop new smart services, also because interactions are more and more online. A lack of insight into the relationship between digital trust, architecture design principles, and open innovation (Mubarak & Petraite, 2020).
- This digital trust can be enabled by developing a digital trust architecture (Qurratuaini, 2018).
- Little empirical knowledge on how the architectural design perspective can be promoted (Dmitrijeva et al., 2019).

Gartner (2021): If you do not introduce trust throughout your data-sharing process, you cannot achieve business value from the data you collect. Gartner predicts that through 2023, organizations that can instill digital trust will be able to participate in 50% more ecosystems, expanding revenue-generation opportunities.

- -Is there an elephant
- -What is the elephant
- -Shall we discuss the elephant

Aim & Research Question

Aim

To provide guidelines for creating digital trust

Research question

"how do architecture principles contribute to digital trust within an open service innovation context"

Design Based Research

Step 1

Uncovering concerns digital trust

Step 2

Identifying architecture principles for digital trust

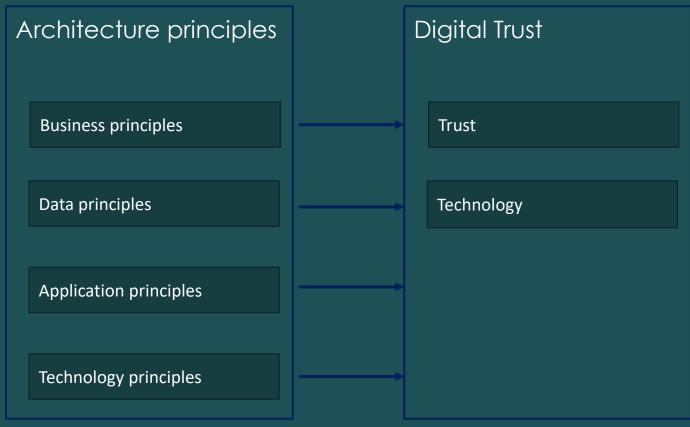
Step 3

Testing architecture principles

Step 4

Evaluate results and refine principles for practice

Step 5


Lesson learned for digital trust design

- -Explorative search by **Fieldlab** workgroup of six practitioners and academics (Innopay, 2018)
- -Semi-structured questionnaire -Pilot interviews; Managers (C-level) of 2 OEM, 3 asset owners, 3 service providers -Codina
- -Literature study principles; OECD, TOGAF framework -design principles by two ICT architects and open innovation scholar

-3 - 4 completed questionnaire on Ol (Chesbrough et al., 2014), trust between organizations (Becerra et al., 2008), trust in Smart Industry technologies (Imran et al. 2018; Kim et al., 2019; Shin, 2019) enterprise architecture (Aier, 2014; Matheus et al., 2021).

Expert discussion in Fieldlab workgroup of six practitioners and academics

Result

Open service Innovation development context

Business Principles

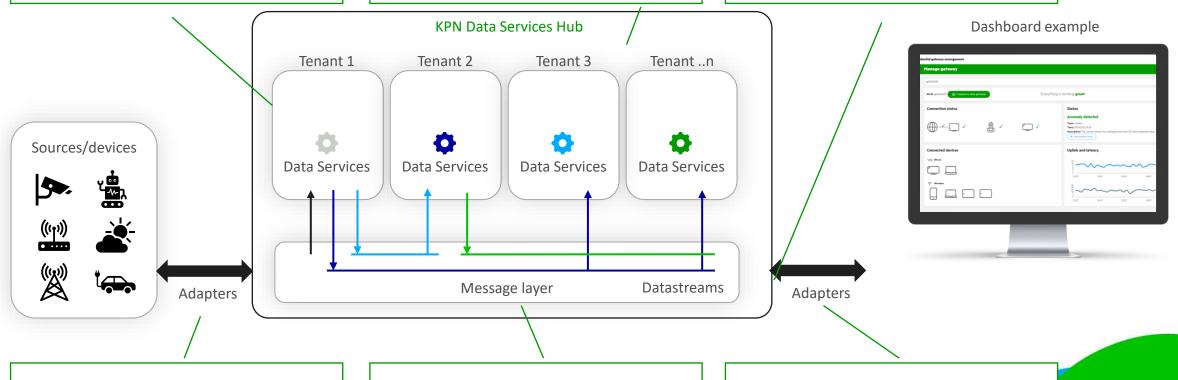
Architecture principle	Implications for digital trust
Business Principle 1:	To use the full benefit of the digital world
Agile organization	organizations must transform into an agile
	organization and willing to change business
Business Principle 2:	Collaboration agreements must be made. They
Intellectual property	specify who owns the (enriched) data and
	intellectual property and who allows access to
	the data.
Business Principle 3:	Define which laws and regulations are in scope to
Comply with laws and regulations	comply to.

Information Principles

Architecture principle	Implications for digital trust
Information Principle1:	The participant who creates the data is the owner
Data has an owner	of the data. The owner is the only party who
	grants others access to his data.
Information Principle 2:	(sensor) data delivered by automated processes
Realtime data	might be time critical within business processes. It
	must be processes and treated accordingly.
Information Principle 3:	Measures are taken to ensure that the data is not
Data is secured	available to everyone
Information Principle 4:	To increase trust within the eco data system all
Logging	actions on the the data will be logged
Information Principle 5:	To enable exchange, the data must be made
Data is accessible	available to the organizations involved

Technology Principles

Architecture principle	Implications for digital trust
Technology Principle 1:	Security measurement are embedded into the
Security by design Technology Principle 2: Deploying a platform	platform hence the platform itself is secure To prevent the data from being available via different platforms, one central platform will be used where every participant can share data
Technology Principle 3: Platform is high available	For timely availability of the data, it is necessary to use a platform that meets the highest availability requirements
Technology Principle 4: Scalable platform	To support future growth the platform is almost unlimited scalable in size, connections and power so new participants and new functions can be supported
Technology Principle 5: Data Integrity	The platform ensures integrity of the processed data in rest as well as in transit

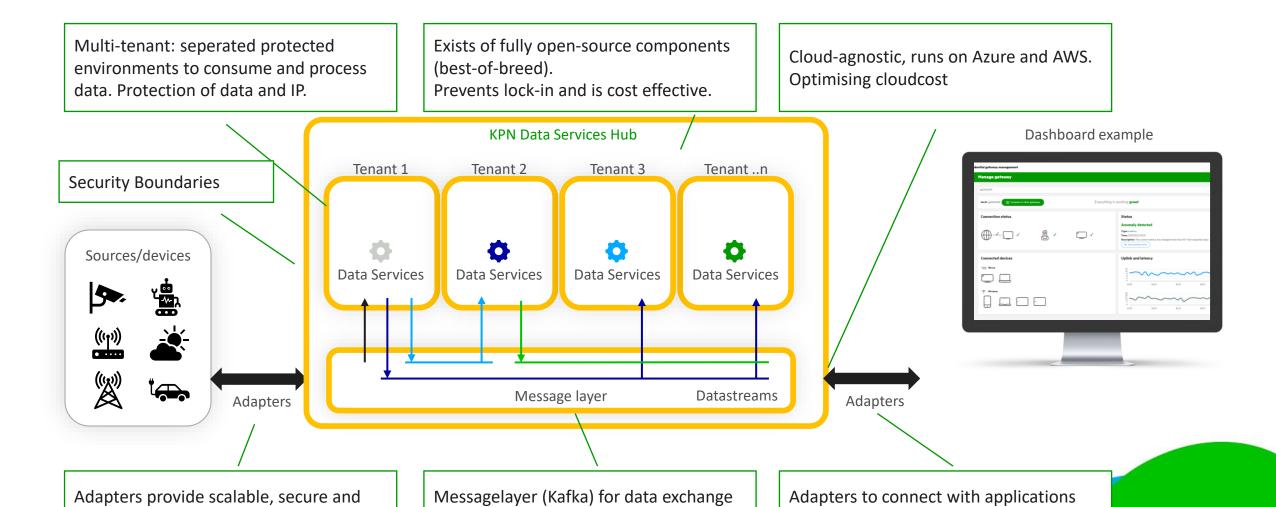

How we do this with the KPN Data Services Hub?

Multi-tenant: seperated protected environments to consume and process data. Protection of data and IP.

Exists of fully open-source components (best-of-breed).

Prevents lock-in and is cost effective.

Cloud-agnostic, runs on Azure and AWS. Optimising cloudcost


Adapters provide scalable, secure and generic connectivity

Messagelayer (Kafka) for data exchange within the platform

Adapters to connect with applications and devices outside the platform

How we do this with the KPN Data Services Hub?

within the platform

generic connectivity

and devices outside the platform

In practise

CONNECTED FACTORIES

Data sharing in the manufacturing industry

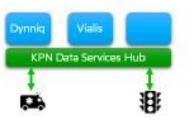
- Connected Factories is one of the 8 Smart Industry transformations.
- Safe and securely data sharing in the manufacturing supply chain is the main focus
- The Fieldlab Smart Connected Supplier
 Network aims to achieve this.

In practise

Better and safer trafficflow

Real-time data communication between ambulance and traffic light systems to set green light on intersections when arriving

Situation


 Dangerous situations because ambulances/firemachines drive through red traffic light

Solution

- Intelligent traffic light systems connected by KPN DSH with ambulances and traffic light management systems (Dynniq).
- Ambulances have an ability to request 'prioriteit' at traffic light systems at intersections, the traffic light responses by setting green light for the ambulance

Specialties

- Several competitors on one platform
- Low latency (200ms)

Dutch ambulances now safer on the road

28 March 2022

The Dutch ambulance sector is the first emergency service to connect to Talking Traffic services nationwide. Thanks to Talking Traffic, ambulances on their way to an emergency (i.e. with siren blaring and lights flashing) will from now on always be "connected" and therefore "digitally visible". Smart traffic lights can give ambulances a green light and therefore a safe passage when they cross over an intersection. Other road users are warned in good time that an ambulance is approaching so that they can react accordingly. This helps increase road safety for other road users, the ambulance crew and the patient on board.

Thank you for your attention

jan.harmsen@kpn.com>; yvonne.kirkels@ou.nl or y.kirkels@fontys.nl