

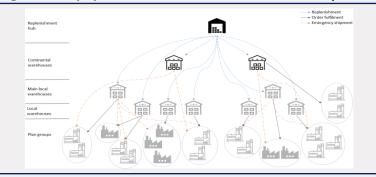
- Context
- Journey
- Summary of the changes
- New service concept
- > Results after implementation

- Context
- Journey
- Summary of the changes
- New service concept
- Results after implementation

Context: After-Sales service contracts for spare parts

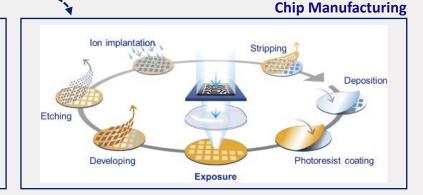
"Performance-Based Contracting (...) tying a supplier's compensation to the output value of the product generated by the customer (buyer)."

S.H. Kim, M.A. Cohen and S. Netessine (2007)



Context: ASML and its customers

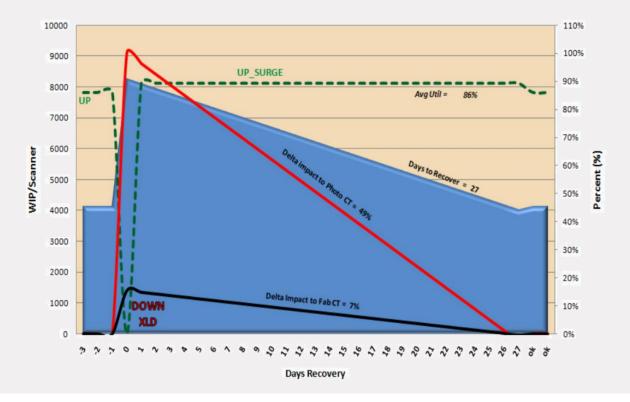
After-sales service



High Tech Equipment

High number of low failure rate components coupled with high uptime service commitments:

- > 10,000 spare parts and service tools
- > 45 locations worldwide
- > 3,000 systems serviced


High number of process steps for one layer, multiple layers and expensive capacity extension:

- High utilization, bottleneck machine
- 72,000€ per hour of downtime
- 27 days to recover from a 24 hours downtime

Impact of extreme long downs on a modern fab

Context: Existing service measures

Customer Service Degree No commitment on late deliveries

DownTime Waiting for Parts Multiple fast deliveries can compensate for a very long one

Current service measures, including their variants, do not directly cover the need to prevent (extreme) long interruptions though they hurt the customer the most.

Focus on variability: next step for service

XLD definition Time-to-repair longer than H consecutive hours (e.g. 24hrs)

Time-to-repair Diagnostics, parts and tools delivery, swapping and recovery

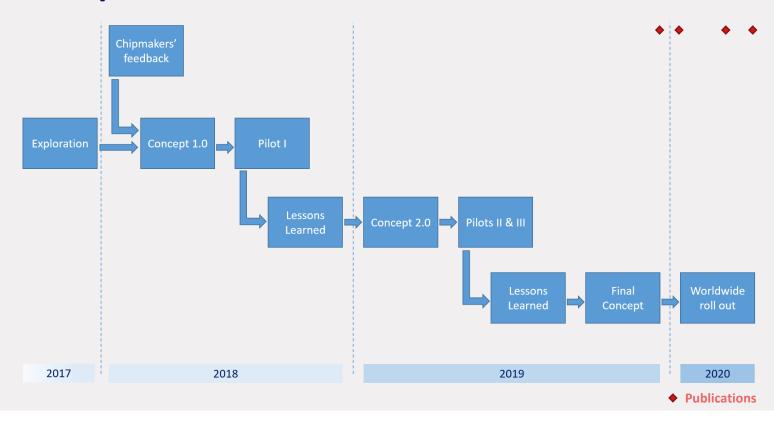
O'Connor and Kleyner, Spare parts supply is the main source of variation 2012

Our scope Spare parts and service tools

- Context
- > Journey
- Summary of the changes
- New service concept
- Results after implementation

New service supply concept developed for ASML

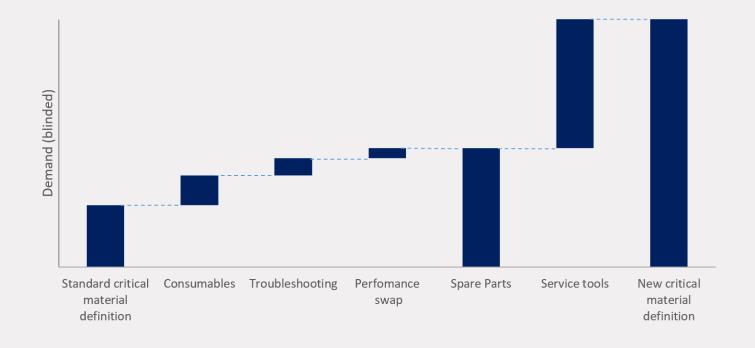
Research question


How to modify a service supply concept to reduce the number of extreme long downtime events (XLDs)?

- 1 Create a new service concept that reflects better customer impact resulting in more transparency and better alignment
- 2 Develop and implement a new spare parts and service tools planning approach to support the new service metric
- 3 Use the key insights of our research on XLDs

High level plan

- Context
- Journey
- > Summary of the changes
- New service concept
- > Results after implementation


Summary of the changes implemented worldwide

Dimensions	Themes	Previous concept	New concept
Service measure	Critical material definition	 Spare parts used during a system down event 	 All materials needed for optimal system performance
	Performance review period	Measured over a quarter	Measured over a month
	Performance metric	Focus on average delivery lead time	Focus on average delivery lead time and number of long downtimes
Planning Approach	Scope of the planning model	Spare parts only	Spare parts & service tools
		 Only demand for consumed spare parts is forecasted 	 All demand for materials sent to customers is forecasted
	Impact on fab operations	Assumed equal for all spare parts	Tailored using fab-specific focus materials
	Planning method	System approach	 Combination of item approach and system approach
	Hold-back levels	No hold-back levels	Hold-back levels for focus materials
	Lateral transshipments	All lateral transshipments allowed	Lateral transshipments allowed only if within a target delivery time
	Emergency shipments	 Emergency shipments lead time assumed to be 48 hours 	Emergency shipments guaranteed within 72 hours

Example: New critical material definition

- > Context
- Journey
- Summary of the changes
- New service concept
- > Results after implementation

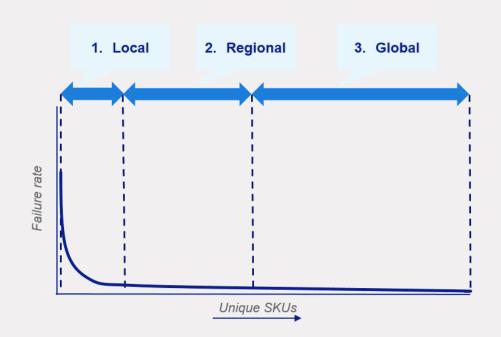
New service measure developed: Hit Ratio

Demand All requested items delivered to fab

Miss Requested item not available within the SKU-specific

target shipment time

Hit ratio = One month observed demand for all SKUs—One month missed deliveries
One month observed demand for all SKUs



Hit Ratio: Transparent delivery times per SKU

 Per site a stocking proposal is made based on new business rules

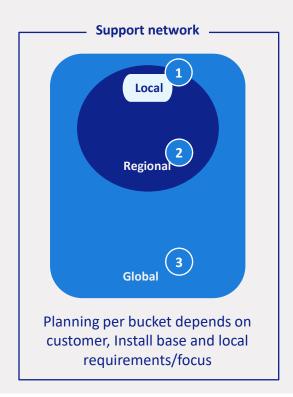

- Local (1) is further split in:
 - A. High usage materials
 - B. Dead-on-Arrival multi-hitter
 - C. XLD drivers

Illustration of the new concept for a theoretical fab

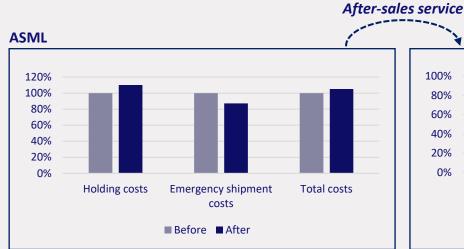
New service supply concept implemented at ASML

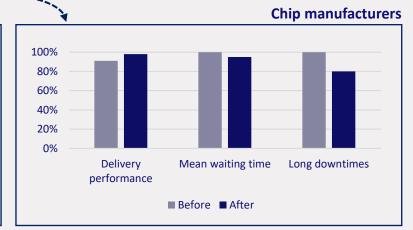
Research question

How to modify a service supply concept to reduce the number of long downtime events (XLDs)?

Methodology

- Multi-echelon
- Multi-location: > 45 locations
- Multi-item: > 10,000 spare parts & service tools
- Heuristics




- Context
- Journey
- Summary of the changes
- New service concept
- > Results after implementation

Results measured over the worldwide installed base

The new service measure and planning approach have been implemented and resulted in:

- > 50% overall decrease of emergency shipments
- > 80% decrease in fast movers' emergency shipments
- ~ 5% cost increase

Helping chip manufacturers worldwide achieve more stable operations:

- ~ 20% reduction in long downtime events (XLDs)
- ~ 1.5B€ generated across the semiconductor industry
- Making the industry more sustainable

Summary

We designed a new service concept to reduce the number of extreme long system interruptions – Hit Ratio

Our new service concept resulted in a new optimization problem for the tactical planning, new algorithms and new business rules

We implemented the new service concept to the complete service network of ASML and analyzed its impact – 1,5 B€ generated

