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Using Deep Reinforcement Learning to determine (tactical) base stock levels for repairable spare parts
while considering day-to-day (operational) flexibility enabled by interventions.
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On a tactical level, base stock levels are determined based on aggregated product and
demand data. Interventions (e.g. expediting repair jobs, lateral transshipments) are
performed on a day-to-day basis to prevent and solve short term inventory issues.
Currently, this operational flexibility enabled by interventions is not considered when
determining base stock levels. This lead us to the following research question:

How can the spare part inventory planning on a tactical level and
on an operational level be integrated?
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We consider a single-site, single-echelon network where
spare parts are delivered to customers directly. Upon failure
of a component, the customer requests a replacement item
from the spare part pool. When a replacement is received, ,
the failed component (Unserviceable Unit; UU) is sent to {{e,n-lff:ﬂ
the repair shop. After repair, the now Serviceable Unit (SU) 3
is sent to the spare part pool.

" Pool Repair
We use the Deep Q Learning algorithm to train the neural
network. We create two DRL models: one optimizing the
timing and order of interventions (operational) and one determining the base stock levels
minimizing total integrated cost (tactical/integrated). We use Discrete Event Simulation
to determine the rewards (negative costs) for taking certain actions in given states. At
first, we consider expediting repair jobs as sole intervention. Later, we demonstrate the
possibility for model extensions by introducing temporarily hiring components from
external parties

Model

First, we optimize interventions for a wide range of base stock levels.

State: stock on hand, backorders, repair pipeline, demand rate, acquisition costs, repair lead time,
expediting success probability

Action:  the number of repair jobs expedited

Cost: Backorder and expediting costs

By inserting SKU charactersitics (e.g. demand rate, acquisition cost) as state features, our

model learns to take different actions for different products and is therefore very
scalabe.
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Experiments

We find that our model is successful in reducing costs while improving the fill rate.
Additionally, the scalable approach of training one model to take actions for different
SKUs works as intended. Below we explain our model’s behaviour.

We find that more repair jobs are expedited for:
* high acquisition costs

* high demand rates

* high repair lead times

* low expediting success probabilities

0]\ )\ VALV, J A

Practical implications Contribution to literature
Determining base stock levels in an integrated °* Using Deep Reinforcement Learning for

way should lead to better synchronization integration of operational and tactical
between the planning levels. Possible decision-making

improvements: Training one model to take decisions for

* Lower total costs different SKUs

* Improved service level Relatively easy addition of interventions due
* Less interventions required to Markov Decision Problem formulation

* Lower inventory investment costs

Limitations
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We found the following from currently available literature on the subject of integration
of the operational and tactical decision-making:

e Often, only one (at most two)  Methods are difficult to generalize.
intervention is considered. * Only one product type is considered.
Most focus is put on lateral * Only one paper found on repairable
transshipments. spare parts.

These observations together with the four directions for future research on integrated
supply chain planning (1. include uncertainty, 2. bigger problems, 3. complex systems, 4.
long-term impact of daily actions) bring us to Deep Reinforcement Learning as our

solution approach.
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Deep Reinforcement Learning (DRL) is a type of machine learning that combines
reinforcement learning (RL) with deep learning. DRL algorithms use neural networks to
approximate the value function or policy for an RL agent. The input of the neural
network are state features (e.g. all relevant information on the inventory status) and the
output denotes the action (e.g. intervention) that should

be taken. The agent interacts with its environment by
taking actions, receiving rewards (often generated
through simulation), and adjusting its neural network
parameters accordingly.
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Model

On a tactical/integrated level, we optimize the base stock levels (BSLs) such that the
sum of the operational costs (i.e. backorder and intervention costs) and tactical costs
(i.e. holding costs and penalty costs for not meeting service level agreements) are
minimized. Operational decisions (interventions) are now fixed and given by the
operational model, but the costs are dependent on the base stock levels (determined
tactically).
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The state of our integrated model does not change. Therefore, we do not have to link
different states to different actions. Other optimization techniques can be used to solve
the formulated model. We implement Simulated Annealing to compare our method’s
performance to.

Experiments

We find comparable results for both our DQL and Simulated Annealing solving
approach. Both models find base stock levels that enable a 1 to 2% total cost reduction
compared to our benchmark. We find that in general, performing interventions allows
for lower base stock levels. How much the base stock levels can be reduced are
dependent on the SKU’s characteristics. Our model reduces base stock levels for:
* low acquisition costs: backorders costs do not outweigh holding costs,
* low demand rates: for lower demand rates, it is more cost efficient to expedite
occasionally than to hold more stock,
high repair lead times: expediting repair jobs with high lead times has more effect,
high expediting success probabilities: the model learns to hold less stock for SKUs for
which interventions have more effect.

Our model’s behavior is found to be logical. As a model extension, we add the
intervention of hiring components from third parties to quickly solve backorders. A 3.5%
total cost reduction was found in the experiment run for this model extension.

Recommendations

Stability issues for Deep Q Learning * Choose a more stable algorithm (using
algorithm stochastic policies)

Period length of two weeks does not allow Reformulate repair pipeline to limit size of
for daily actions state vector and allow for stochastic lead
times

Include more than two interventions
Explore possibility of building one neural
network




