
2. LITERATURE
We found the following from currently available literature on the subject of integration
of the operational and tactical decision-making:

These observations together with the four directions for future research on integrated
supply chain planning (1. include uncertainty, 2. bigger problems, 3. complex systems, 4.
long-term impact of daily actions) bring us to Deep Reinforcement Learning as our
solution approach.
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7. CONCLUSION & RECOMMENDATIONS
Practical implications
Determining base stock levels in an integrated
way should lead to better synchronization
between the planning levels. Possible
improvements:
• Lower total costs
• Improved service level
• Less interventions required
• Lower inventory investment costs

Contribution to literature
• Using Deep Reinforcement Learning for

integration of operational and tactical 
decision-making

• Training one model to take decisions for 
different SKUs

• Relatively easy addition of interventions due 
to Markov Decision Problem formulation

Limitations
• Stability issues for Deep Q Learning 

algorithm
• Period length of two weeks does not allow 

for daily actions

Recommendations
• Choose a more stable algorithm (using 

stochastic policies)
• Reformulate repair pipeline to limit size of 

state vector and allow for stochastic lead 
times

• Include more than two interventions
• Explore possibility of building one neural 

network

1. RESEARCH GOAL
On a tactical level, base stock levels are determined based on aggregated product and
demand data. Interventions (e.g. expediting repair jobs, lateral transshipments) are
performed on a day-to-day basis to prevent and solve short term inventory issues.
Currently, this operational flexibility enabled by interventions is not considered when
determining base stock levels. This lead us to the following research question:

How can the spare part inventory planning on a tactical level and 
on an operational level be integrated?

Integrating operational and tactical decision-
making in spare part inventory management
Using Deep Reinforcement Learning to determine (tactical) base stock levels for repairable spare parts
while considering day-to-day (operational) flexibility enabled by interventions.

3. DEEP REINFORCEMENT LEARNING
Deep Reinforcement Learning (DRL) is a type of machine learning that combines
reinforcement learning (RL) with deep learning. DRL algorithms use neural networks to
approximate the value function or policy for an RL agent. The input of the neural
network are state features (e.g. all relevant information on the inventory status) and the
output denotes the action (e.g. intervention) that should
be taken. The agent interacts with its environment by
taking actions, receiving rewards (often generated
through simulation), and adjusting its neural network
parameters accordingly. St
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5. OPERATIONAL LEVEL

First, we optimize interventions for a wide range of base stock levels.
State: stock on hand, backorders, repair pipeline, demand rate, acquisition costs, repair lead time,

expediting success probability
Action: the number of repair jobs expedited
Cost: Backorder and expediting costs

By inserting SKU charactersitics (e.g. demand rate, acquisition cost) as state features, our
model learns to take different actions for different products and is therefore very
scalabe.

Model

We find that our model is successful in reducing costs while improving the fill rate.
Additionally, the scalable approach of training one model to take actions for different
SKUs works as intended. Below we explain our model’s behaviour.

We find that more repair jobs are expedited for:
• high acquisition costs
• high demand rates
• high repair lead times
• low expediting success probabilities

Experiments

6. TACTICAL/INTEGRATED LEVEL

On a tactical/integrated level, we optimize the base stock levels (BSLs) such that the
sum of the operational costs (i.e. backorder and intervention costs) and tactical costs
(i.e. holding costs and penalty costs for not meeting service level agreements) are
minimized. Operational decisions (interventions) are now fixed and given by the
operational model, but the costs are dependent on the base stock levels (determined
tactically).

The state of our integrated model does not change. Therefore, we do not have to link
different states to different actions. Other optimization techniques can be used to solve
the formulated model. We implement Simulated Annealing to compare our method’s
performance to.

Model

We find comparable results for both our DQL and Simulated Annealing solving
approach. Both models find base stock levels that enable a 1 to 2% total cost reduction
compared to our benchmark. We find that in general, performing interventions allows
for lower base stock levels. How much the base stock levels can be reduced are
dependent on the SKU’s characteristics. Our model reduces base stock levels for:
• low acquisition costs: backorders costs do not outweigh holding costs,
• low demand rates: for lower demand rates, it is more cost efficient to expedite

occasionally than to hold more stock,
• high repair lead times: expediting repair jobs with high lead times has more effect,
• high expediting success probabilities: the model learns to hold less stock for SKUs for

which interventions have more effect.

Our model’s behavior is found to be logical. As a model extension, we add the
intervention of hiring components from third parties to quickly solve backorders. A 3.5%
total cost reduction was found in the experiment run for this model extension.
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4. GENERAL MODEL DESCRIPTION
We consider a single-site, single-echelon network where
spare parts are delivered to customers directly. Upon failure
of a component, the customer requests a replacement item
from the spare part pool. When a replacement is received,
the failed component (Unserviceable Unit; UU) is sent to
the repair shop. After repair, the now Serviceable Unit (SU)
is sent to the spare part pool.

We use the Deep Q Learning algorithm to train the neural
network. We create two DRL models: one optimizing the
timing and order of interventions (operational) and one determining the base stock levels
minimizing total integrated cost (tactical/integrated). We use Discrete Event Simulation
to determine the rewards (negative costs) for taking certain actions in given states. At
first, we consider expediting repair jobs as sole intervention. Later, we demonstrate the
possibility for model extensions by introducing temporarily hiring components from
external parties

• Often, only one (at most two) 
intervention is considered.

• Most focus is put on lateral 
transshipments. 

• Methods are difficult to generalize.
• Only one product type is considered. 
• Only one paper found on repairable 

spare parts.


