
UNIVERSITY OF TWENTE.

SERVICE CONTROL TOWERS FOR PREDICTIVE MAINTENANCE AND SPARE PARTS PLANNING

WHAT IS A SERVICE CONTROL TOWER?

TOPAN ET AL. (2020), THE REVIEW PAPER

- Service control tower (SCT) is a centralized hub
 - uses real-time data
 - integrates processes and tools across the end-to-end service in the supply chain

Companies use SCTs to monitor their supply chain and generate exception messages

- when projected stock levels deviate from the tactical plans
- typically generated based on business rules
- Planners review exceptions and select their operational interventions
 - e.g., place an **emergency shipment** or an extra **new buy**.

You have visibility to all the events and milestones you want track

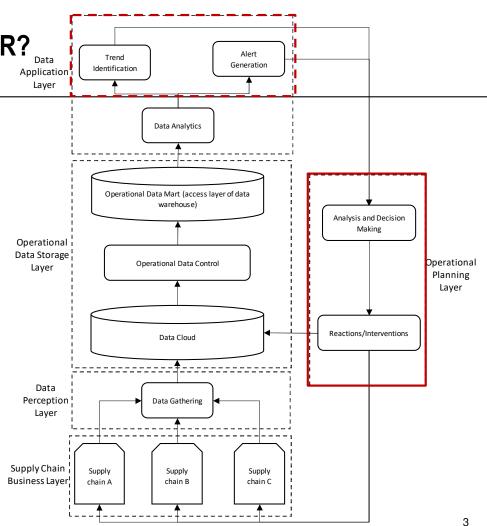
work.

You receive alerts based on the SLAs and lead times tagged to all across the entire netevents and milestones, and you collaborate to resolve them in real

You now execute transactions within the control tower, and the users make decisions based on recommendations from the intelligent agents.

The intelligent agents imbedded in the execution layer run the supply network without human intervention.

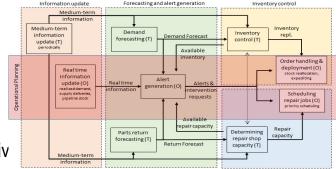
UNIVERSITY OF TWENTE.


2

WHAT IS A SERVICE CONTROL TOWER?

TOPAN ET AL. (2020)

 A typical SCT consists of five layers (Shou-Wen, Ying, & Yang-Hua, 2013).


- Operational planning layer and data application layers are of our interest.
- Data gathering, storage, supply structure are related to the ICT or SC infrastructure and related to strategical or tactical level

WHAT IS OPERATIONAL PLANNING IN SPARE PARTS PLANNING?

TOPAN ET AL. (2020)

- Decisions about interventions that have immediate effect and influence short-term performance
 - Short term: hours, days, or at most weeks
- → So actually short sighted decisions
- Interventions whose lead time shorter than regular replenishments;
- Decisions are based on real-time SC information, which is not available for tactical planning
 - inventory on hand,
 - pipeline stock,
 - number of parts in repair or return,
 - process completion time estimates,
 - short-term demand info derived from condition monitoring, preventiv

 Strategic and tactical decisions, e.g., supply network, inventory parameters, cannot be influenced in short-term, and therefore, they are fixed, but they have an effect on oper. plan.

TOPAN ET AL. (2020)

- Five OEMs participated in our review, abbreviated A, B, C, D, and E
- **A**: an **IT** company hardware and telecommunication devices
- **B**: semiconductor industry
- C: aerospace industry
- **D**: **defense** and security applications
- E: material handling systems

• The five have a strong market position/market leader with close ties with their customers

COMPANY SURVEYS

TOPAN ET AL. (2020)

- Mostly SC networks with 2-4 echelons
- Mostly slow moving and expensive parts
- Operational planning requires significant effort (40-90% of the planning team)

Service structure	OEMs				
(current situation)	A	В	C	D	E
Number of product types	Many (> 1000)	Medium (100-1000)	Many (> 1000)	Few (customized) (< 100)	Medium (customized) (100-1000)
Number of installed bases / Number of customers	Very many (> 10000) / Many (> 1000)	Many (> 1000) / Few (< 100)	Medium (100-1000) / Medium (100-1000)	Few (< 100) / Few (< 100)	Many (> 1000) / Many (> 750)
Number of customers / Type of customers	Many (> 1000) / B2B and B2C	Few (100-1000) / B2B	Few (100-1000) / B2B	Very few (< 100) / B2G	Many (> 1000) / B2B
Number of echelons / Number of warehouses	3-4 echelons / 3 CWs, hundreds of LWs	2-3 echelons / 1 CW, < 50 LWs	2-echelon / 1 CW, < 20 LWs	2 echelon / 1CW, 4 assets as depot	1 echelon / 1CW
Carries out maintenance? / Operates repair shops?	Yes / Yes (as a separate entity)	Yes, onsite / No	No / Yes	No / Yes	Yes, onsite / No
Parts planning: LRU and or SRU/ Number of SKUs	LRU / Many (>10000)	LRU / Medium (1000-10000)	LRU and SRU / Many (> 10000)	LRU and SRU / Medium (1000-10000)	LRU / Medium (1000-10000)
Part characteristics (demand vs price)	All sorts of demand rates and prices	Mostly slow moving (<5 per year) and expensive (> 1000€)	All sorts of demand rates and expensive (> 1000€)	Mostly slow moving (<5 per year) and expensive (> 1000€)	All sorts of demand rates, typically cheap (<100€)
Workforce among operational and tactical planning	Operational: 40% FTEs Tactical: 60% FTEs	Operational: 70% FTEs Tactical: 30% FTEs	Operational: 67% FTEs Tactical: 33% FTEs	Operational: 60-90% FTEs Tactical: 40-10% FTEs	Operational: 90% FTEs Tactical: 10% FTEs

COMPANY SURVEYS – RELATION BETWEEN OPERATIONAL PLANNING AND TACTICAL PLANNING

BASED ON TOPAN ET AL. (2020)

Approaches		OEMs					
No link,	A	В	С	D	E		
Hierarchical, Integrated	Integrated	Integrated	Between no link - hierarchical	No link - Hierarchical – Integrated (depending on service contracts)	NA hence No link		

- Only A and B use some form of integration to update tactical planning when it deviates.
- Tactical planning may often be overruled by operational planning at these OEMs.

COMPANY SURVEYS – INFORMATION CONTENT AND USE

BASED ON TOPAN ET AL. (2020)

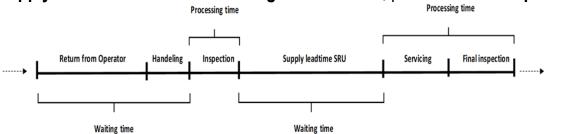
Supply and Demand Information Use and Control		OEMs				
		В	C	D	E	
Getting status update about the external supply (your suppliers') process		3	3	2	2	
Having control over external supply process		2	2	1	1	
Having prediction models/demand forecasts		3	3	2	3	
Using prediction models/forecast in planning operations interventions		2	3	1	3	

- The five all have information about their external supply process. Yet, they have limited or no control over their supply process.
 - They often do not use supply information
- Four of *the five* use **demand forecasts** for operational interventions.
 - → Machine learning is a powerful tool here!

COMPANY SURVEYS – OTHER MODEL DRIVEN ASPECTS

BASED ON TOPAN ET AL. (2020)

F14	OEMs					
Elements	A	В	C	D	E	
Optimization methods for decision problems	Simple decision rules	Simple decision rules	Simple decision rules	Manual / Simple decision rules (depending on service contracts)	NA	
Demand and supply model	Mix of deterministic and stochastic	Mix of deterministic and stochastic	Mix of deterministic and stochastic	Deterministic	NA	
Planning horizon	Finite	Finite	Finite	Infinite / Finite (depending on service contracts)	NA	

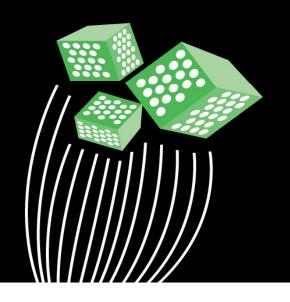

- Operational planning is based on **simple rules (ad-hoc thresholds)** or on **expert knowledge**.
 - Proactive or reactive interventions
- **Deterministic demand and supply models** are widely used. The uncertainty of demand and supply is often neglected.
- Using a finite planning horizon

Alert generation and prioritization for a closed loop supply chain of repairable components

Kaveh Alizadeh¹, Engin Topan¹, Matthieu van der Heijden¹, Jos van Hillegersberg¹

1 Department of Industrial Engineering and Business Information Systems, Hallenweg 17, 7522 NH Enschede, The Netherlands

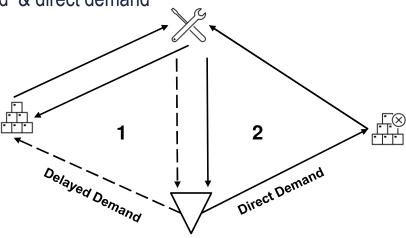
- All five use a mostly event-driven alerts often based on using thresholds
- Alert systems generate too many exception messages, e.g., on average 300 -2000 alerts per week.
 - Yet, a small portion (15% to 50%) of alerts are identified as high priority.
 - Managing and automated processing of exception messages
- Using advance supply and demand information to generate alerts, plan interventions proactively.



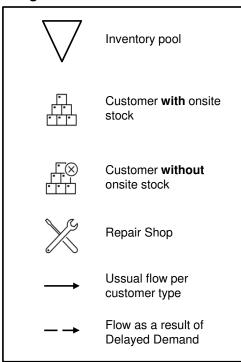
 We combine a data-driven method (neural networks) and a model-based approach (probabilistic model) to support human planners by generating alerts when a supply delay is identified.

UNIVERSITY OF TWENTE.

ALERT GENERATION AND PRIORITIZATION FOR A CLOSED LOOP SUPPLY CHAIN OF REPAIRABLE COMPONENTS

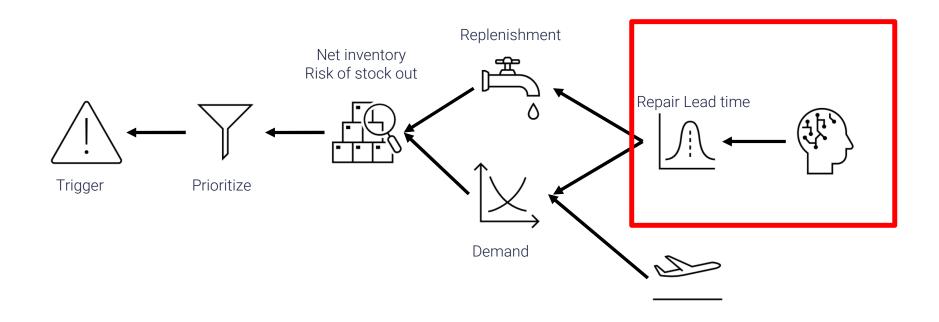

Content

- » Supply chain setting
- » Methodology
- » Repair lead time prediction
- » Results
- » Fokker Services use case

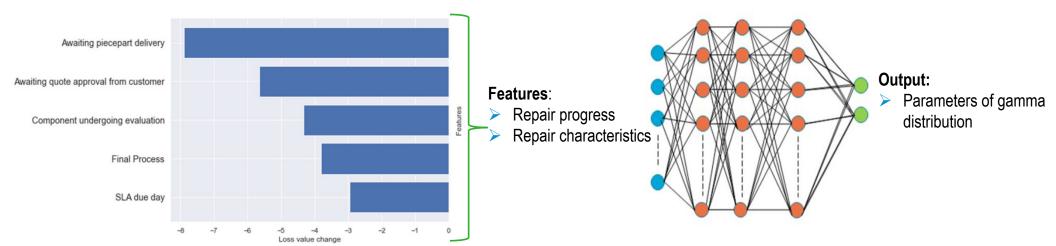


Supply chain setting

- » Closed loop supply chain for repairable components
- » Replenishment through repair
- » Supply lead time = Repair lead time (aka TAT)
- » 2 Types of demand: delayed & direct demand



Legend:



Methodology

Repair lead time prediction

- » Be wary of the effort needed for:
 - » Hyperparameter tuning
 - » Training, validating and testing
 - » Regularization (to overcome overfitting)

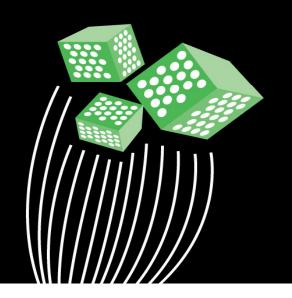
Prediction results

» Prediction error is of our model is lower than the benchmark

Model	Negative Log Likelihood	Mean Absolute Error
Featured	2.5	4.15
Featureless	4.5	27.78
Log-Linear Regression	4.8	19.45
Linear Regression	5.25	1.6

» Prediction accuracy is 14% higher than featureless approach

Prediction Type	Featured	Featureless
Combined	80.47%	70.70%


» Cost reduction of up to 13% can be gained

UNIVERSITY OF TWENTE.

VALUE OF PREDICTION IS IN WHAT YOU DO WITH IT

IMPLEMENTATION FOR FOKKER SERVICES

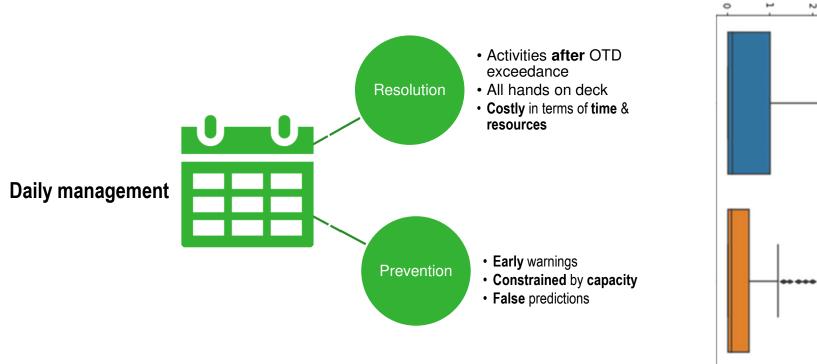
Ingredients to consider

- » Implementation aspects to consider:
 - » Business Intelligence (BI):

- » Understand the users and their objectives (look at it from end user's point of view)
- » Put thoughts and experiment with the user interface (maybe consider demonstrators)
- » **Differentiate** between **must know** and **nice to know** (prevent information overflow)

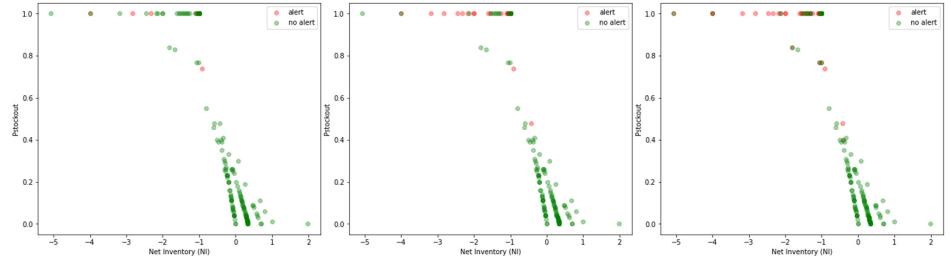
» Process:

- » Find alignment with current activities/processes (tools must fit the need)
- » Phased and/or parallel implementation (instead of big bang replacement)



- » Early involvement and recurring feedback sessions (build on ownership)
- » Listen to the end user and implement improvements in short iteration (Build on trust)

Operationalization



Illustrative example for inventory control | Dark cockpit principle

» Prediction for one planning instance with varying capacity constraint



Capacity

Illustrative example for inventory control | Zooming in

- » Net inventory at t0 = 0
- » Net Inventory at t0 + T = -1.47
- » Probability of stock out =78.0%
- » Expected Demand = 1.47
 - » Direct Demand: 1.01
 - » Indirect demand: 0.46
- » Expected replenishment: 0
 - » Replenishment orders in pipeline = 2

» Possible interventions:

- » Reduce Indirect demand occurrence through expediting the customer repair (impact on net inventory ~ +0.46)
- » Increase the replenishment probability through expediting (impact on net inventory ~+2)
- » Joint expediting (impact on net inventory \sim +2.46)

Thank you for listening!

Questions?

Topan, E., Eruguz, A. S., Ma, W., Van Der Heijden, M. C., & Dekker, R. (2020). A review of operational spare parts service logistics in service control towers.

European journal of operational research, 282(2), 401-414.

Alizadeh, K., Topan E., van der Heijden, M., and van Hillegersberg, J. (2022). "Alert generation and prioritization for a closed loop supply chain of repairable components", under review at *European Journal of Operational Research*.

Topan, E., & van der Heijden, M. C. (2020). Operational level planning of a multi-item two-echelon spare parts inventory system with reactive and proactive interventions. *European journal of operational research*, 284(1), 164-175.

Gerrits, B., Topan, E., & van der Heijden, M. C. (2022). Operational planning in service control towers—heuristics and case study. *European Journal of Operational Research*.

Rohaan, D., Topan, E., & Groothuis-Oudshoorn, C. G. M. (2022). Using supervised machine learning for B2B sales forecasting: A case study of spare parts sales forecasting at an after-sales service provider. *Expert Systems With Applications*, 188.