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WHAT IS A SERVICE CONTROL TOWER?
TOPAN ET AL. (2020), THE REVIEW PAPER

= Service control tower (SCT) is a centralized hub

= uses real-time data

= integrates processes and tools across the end-to-end service in the supply chain

= Companies use SCTs to monitor their supply chain and generate exception messages

= when projected stock levels deviate from the tactical plans CoNTROL

= typically generated based on business rules 9 @ -3 @ |
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VISIBILITY ALERTS DECISION-SUPPORT AUTONOMOUS
] You have visibility to all You receive alerts based You now execute trans- The intelligent agents

Planners reVIeW exceptlons and SeleCt thelr operatlonal Interventlons the events and mile- on the SLAs and lead actions within the con- imbedded in the execu-
stones you want track times tagged to all trol tower, and the users tion layer run the supply
. across the entire net- events and milestones, make decisions based on network without human

n e g place an emergency shlpment or an extra new buy work. and you collaborate to recommendations from intervention.

I ' resolve them in real the intelligent agents.
time.
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WHAT IS A SERVICE CONTROL TOWER? _ {—- -
TOPAN ET AL. (2020) Application| ;}Ei

==

Layer

= Atypical SCT consists of five layers (Shou-Wen, Ying,
& Yang-Hua, 2013).

= Operational planning layer and data application
layers are of our interest.

= Data gathering, storage, supply structure are
related to the ICT or SC infrastructure and related to
strategical or tactical level
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WHAT IS OPERATIONAL PLANNING IN SPARE PARTS PLANNING?
TOPAN ET AL. (2020)

= Decisions about interventions that have immediate effect and influence short-term performance
= Short term: hours, days, or at most weeks =>» So actually short sighted decisions
= Interventions whose lead time shorter than regular replenishments;

= Decisions are based on real-time SC information, which is not available for tactical planning

formation u recastingandalert generation Inventory control

= inventory on hand,

= pipeline stock,

= number of parts in repair or return,

Operational Planning

= process completion time estimates,

= short-term demand info derived from condition monitoring, preventiv

= Strategic and tactical decisions, e.g., supply network, inventory parameters, cannot be influenced in short-term, and

therefore, they are fixed, but they have an effect on oper. plan.
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COMPANY SURVEYS
TOPAN ET AL. (2020)

= Five OEMSs participated in our review, abbreviated A, B, C, D, and E

- an IT company hardware and telecommunication devices
: semiconductor industry

: aerospace industry

. defense and security applications

n
m T O b >

: material handling systems
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COMPANY SURVEYS
TOPAN ET AL. (2020)

= Mostly SC networks with 2-4
echelons

= Mostly slow moving and
expensive parts

= Qperational planning requires
significant effort (40-90% of the
planning team)
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Service structure
(current situation)

OEMs

A

B

C

D

E

Number of product types

Many (> 1000)

Medium (100-1000)

Many (> 1000)

Few (customized)
(< 100)

Medium (customized)
(100-1000)

Number of installed
bases / Number of
customers

Very many (> 10000) /
Many (> 1000)

Many (> 1000) /
Few (< 100)

Medium (100-1000) /
Medium (100-1000)

Few (< 100) /
Few (< 100)

Many (> 1000) /
Many (> 750)

Number of customers /

Many (> 1000) /

Few (100-1000) /

Few (100-1000) /

Very few (< 100) /

Many (> 1000) /

Type of customers B2B and B2C B2B B2B B2G B2B
Number of echelons / 5 Cg\;‘seihenlglfdg of 2-3 echelons / 2-echelon / 2 echelon / 1 echelon /
Number of warehouses ,L\L;\/s 1CW, <50 LWs 1CW, <20LWs 1CW, 4 assets as depot 1ICW
Carries out Yes / Yes, onsite /
maintenance? / Yes (as a separate Yes, onsite / No No / Yes No/ Yes 85’13251 ¢
Operates repair shops? entity)
Parts planning: LRU
o LorSIRU LRU/ LRU/ LRU and SRU / LRU and SRU / LRU/
Many (>10000) Medium (1000-10000) Many (> 10000) Medium (1000-10000) Medium (1000-10000)
Number of SKUs

Part characteristics
(demand vs price)

All sorts of demand
rates and prices

Mostly slow moving
(<5 per year) and
expensive (> 1000€)

All sorts of demand
rates and expensive
(> 1000€)

Mostly slow moving
(<5 per year) and expensive
(> 1000€)

All sorts of demand
rates, typically cheap
(<100€)

Workforce among
operational and tactical
planning

Operational: 40% FTEs
Tactical: 60% FTEs

Operational: 70% FTEs
Tactical: 30% FTEs

Operational: 67% FTEs
Tactical: 33% FTEs

Operational: 60-90% FTEs
Tactical: 40-10% FTEs

Operational: 90% FTEs
Tactical: 10% FTEs




COMPANY SURVEYS - RELATION BETWEEN OPERATIONAL PLANNING AND
TACTICAL PLANNING
BASED ON TOPAN ET AL. (2020)

Approaches OEMs
No link, A B C D E
Hierarchical, No link - Hierarchical
Integrated Inteerated Inteerated Between no link - — Integrated NA
& & hierarchical (depending on service hence No link
contracts)

= Only A and B use some form of integration to update tactical planning when it deviates.

= Tactical planning may often be overruled by operational planning at these OEMs.
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COMPANY SURVEYS - INFORMATION CONTENT AND USE
BASED ON TOPAN ET AL. (2020)

Supply and Demand Information Use and Control OEMs
A B C D E
Getting status update about the external supply (your suppliers') process 3 3 2 2
Having control over external supply process 2 2 2 1 1
Having prediction models/demand forecasts 3 3 3 2 3
Using prediction models/forecast in planning operations interventions 3 2 3 1 3

= The five all have information about their external supply process. Yet, they have limited or no control over their supply
process.

= They often do not use supply information

= Four of the five use demand forecasts for operational interventions.

=> Machine learning is a powerful tool here!
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COMPANY SURVEYS - OTHER MODEL DRIVEN ASPECTS
BASED ON TOPAN ET AL. (2020)

OEMs
Elements
A B C D E
T Manual / Simple
Optimization . .. . .. . .. -
Simple decision Simple decision Simple decision decision rules
methods for . NA
.. rules rules rules (depending on
decision problems - N
Service confract
D dand Mix of Mix of Mix of
emand an deterministic and deterministic and deterministic and Deterministic NA
supply model . . .
stochastic stochastic stochastic
Infinite / Finite
Planning horizon Finite Finite Finite (depending on NA
service contracts)

= QOperational planning is based on simple rules (ad-hoc thresholds) or on expert knowledge.
= Proactive or reactive interventions

= Deterministic demand and supply models are widely used. The uncertainty of demand and supply is often neglected.

= Using a finite planning horizon
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ALERT GENERATION Alert generation and prioritization for a closed loop supply chain of repairable components
& PRIORITIZATION Kaveh Alizadeh!, Engin Topan!, Matthieu van der Heijden!. Jos van Hillegersberg!

1 Department of Industrial Engineering and Business Information Systems, Hallenweg 17, 7522 NH Enschede, The Netherlands

All five use a mostly event-driven alerts often based on using thresholds

Alert systems generate too many exception messages, e.g., on average 300 -2000 alerts per week.
= Yet, a small portion (15% to 50%) of alerts are identified as high priority.
= Managing and automated processing of exception messages

Using advance supply and demand information to generate alerts, plan interventions proactively.

Processing time Processing time

|
I_;I I |
Return from Operator Handeling Inspection 1 Supply leadtime SRU

T T 1

Servicing Final inspection
o | | |
1

[ | [ |
I I

Waiting time Waiting time
We combine a data-driven method (neural networks) and a model-based approach (probabilistic model) to support

human planners by generating alerts when a supply delay is identified.
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ALERT GENERATION AND PRIORITIZATION FOR A CLOSED LOOP
SUPPLY CHAIN OF REPAIRABLE COMPONENTS




@: ALERT GENERATION & PRIORITIZATION

Content

Y

Supply chain setting
Methodology

Repair lead time prediction
Results

Fokker Services use case

M

Y

M

M

UNIVERSITY OF TWENTE.



ALERT GENERATION & PRIORITIZATION
Supply chain setting

» Closed loop supply chain for repairable components
» Replenishment through repair

» Supply lead time = Repair lead time (aka TAT)

» 2 Types of demand: delayed & direct demand

\

— — —
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Inventory pool

Customer with onsite
stock

Customer without
onsite stock

Repair Shop

Ussual flow per
customer type

Flow as a result of
Delayed Demand




— ALERT GENERATION & PRIORITIZATION

Methodology

Replenishment

Net inventory
Risk of stock out D%
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SERVICE:
GROUP

Repair lead time prediction

ALERT GENERATION & PRIORITIZATION

Awaiting piecepart delivery

Awaiting quote approval from customer

Component undergoing evaluation

Final Process

SLA due day

» Be wary of the effort needed for:
» Hyperparameter tuning
» Training, validating and testing
» Regularization (to overcome overfitting)
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o Output:
» Parameters of gamma
distribution

Features:
» Repair progress




= ALERT GENERATION & PRIORITIZATION

Prediction results

N4 » Prediction error is of our model is lower Model Negative Log Likelihood Mean Absolute Error

Featureless 4.5 27.78
Log-Linear Regression 4.8 19.45
Linear Regression 5.25 1.6
<C7)/7 » Prediction accuracy is 14% higher than Prediction Type Tnteires Tt
featureless approach Combined 80.47% 70.70%
4
» Cost reduction of up to 13% can be gained
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VALUE OF PREDICTION IS IN WHAT YOU DO WITH IT

IMPLEMENTATION FOR FOKKER SERVICES




—. Implementation for Fokker Services

Ingredients to consider

» Implementation aspects to consider:
» Business Intelligence (BI):
O \ » Understand the users and their objectives (look at it from end user’s point of view)
» Put thoughts and experiment with the user interface (maybe consider demonstrators)
» Differentiate between must know and nice to know (prevent information overflow)

K€~ » Process:

>
k’ij » Find alignment with current activities/processes (tools must fit the need)
» Phased and/or parallel implementation (instead of big bang replacement)
» Human:
. » Early involvement and recurring feedback sessions (build on ownership)
- » Listen to the end user and implement improvements in short iteration (Build on trust)
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Operationalization

—. Implementation for Fokker Services

v UV
Daily management %
~

UNIVERSITY OF TWENTE.

Resolution

Prevention

 Activities after OTD
exceedance

» All hands on deck

+ Costly in terms of time &
resources

+ Early warnings
+ Constrained by capacity
* False predictions

-0
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Implementation for Fokker Services

lllustrative example for inventory control | Dark cockpit principle

» Prediction for one planning instance with varying capacity constraint

Net Inventory (NI)
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Net Inventory (NI)
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= Delayed Demand |g 3 | S aal Demang -k vestory

—. Implementation for Fokker Services

GROUP

lllustrative example for inventory control | Zooming in

Net inventory att0 =0

Net Inventory at tO + T=-1.47
Probability of stock out =78.0%
Expected Demand = 1.47
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» Direct Demand: 1.01

00 \ » Indirect demand: 0.46
Expected replenishment: O

N

» Replenishment orders in pipeline = 2
Possible interventions: T

M

» Reduce Indirect demand occurence through expediting the customer repair (impact on net inventory ~ +0.46)
» Increase the replenishment probability through expediting (impact on net inventory ~+2)

» Joint expediting (impact on net inventory ~ +2.46)
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Thank you for listening!

Questions?
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