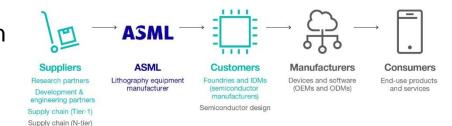

USING INFORMATION FOR PLANNING SPARE PARTS

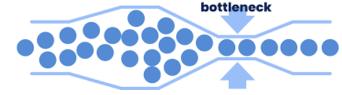
WHO AM I?

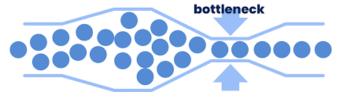


OUTLINE

- Why is information important in supply chains?
- Role of control towers
 - A survey on service control towers for spare parts
- Can we use condition information for spare parts?
 - Advance Demand Information: What is the benefit? How does a smart planning look like?
 - Advance Supply Information: Same story but can we use it for alert generation?
- Future of using information

S(n)


WHY DATA DRIVEN PLANNING?


- Lean and efficient supply chains
 - Also fragile, not flexible / resilient against dynamic market conditions

- → Global chip crisis
- Energy crisis
- → Inflation

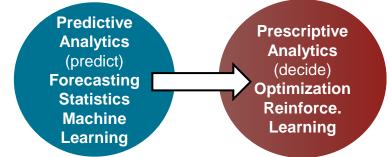
Lack resilience or agility: flexible capacity to anticipate, adapt and res

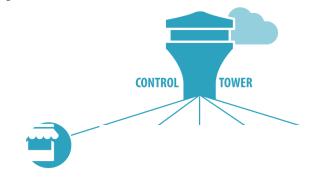
- Paradigm shift: **Disruptive** solutions
 - use data, <u>predictive adaptive control</u> to be <u>flexibility/resilience</u>

Russia-Ukraine war has nearly doubled household energy costs worldwide – new study

Inflatie stijgt naar 14,5 procent in september

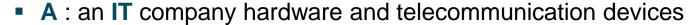
6-10-2022 06:30




CONTROL TOWERS

- Supply chain control towers (SCT)
 - real-time data to control/integrate processes in the supply chain
 - 1) monitor SC
 - 2) signals deviations from plans
 - 3) suggestions / advices to human
 - 4) decisions without human interventions

Model based (Optimization & Math) + Data driven (AI)



You have visibility to a the events and milestones you want track across the entire net-

SPARE PARTS CONTROL TOWERS

TOPAN ET AL. (2020): SURVEY

• Five OEMs participated in our review, abbreviated A, B, C, D, and E

B : semiconductor industry

• C: aerospace industry

• D : defense and security applications

• E: material handling systems

The five have a strong market position/market leader with close ties with their customers

CONTROL TOWERS? FOR SPARE PARTS

TOPAN ET AL. (2020): SURVEY

- Mostly SC networks with 2-4 echelons?
- Mostly slow moving and expensive parts
- Operational planning requires significant effort (40-90% of the planning team)

Service structure	OEMs								
(current situation)	A	В	C	D	E				
Number of product types	mber of product types Many (> 1000)		Many (> 1000)	Few (customized) (< 100)	Medium (customized) (100-1000)				
Number of installed bases / Number of customers	Very many (> 10000) / Many (> 1000)		Medium (100-1000) / Medium (100-1000)	Few (< 100) / Few (< 100)	Many (> 1000) / Many (> 750)				
Number of customers / Type of customers	17mily (> 1000) /		Few (100-1000) / B2B	Very few (< 100) / B2G	Many (> 1000) / B2B				
Number of echelons / Number of warehouses	3-4 echelons / 3 CWs, hundreds of LWs	2-3 echelons / 1 CW, < 50 LWs	2-echelon / 1 CW, < 20 LWs	2 echelon / 1CW, 4 assets as depot	1 echelon / 1CW				
Carries out maintenance? / Operates repair shops?	maintenance? / Yes (as a separate		No / Yes	No / Yes	Yes, onsite / No				
Parts planning: LRU and or SRU/ Number of SKUs	and or SRU/ Many (>10000)		LRU and SRU / Many (> 10000)	LRU and SRU / Medium (1000-10000)	LRU / Medium (1000-10000)				
Part characteristics (demand vs price)	The sorts of defining		All sorts of demand rates and expensive (> 1000€)	Mostly slow moving (<5 per year) and expensive (> 1000€)	All sorts of demand rates, typically cheap (<100€)				
Workforce among operational and tactical planning	Operational: 40% FTEs Tactical: 60% FTEs	Operational: 70% FTEs Tactical: 30% FTEs	Operational: 67% FTEs Tactical: 33% FTEs	Operational: 60-90% FTEs Tactical: 40-10% FTEs	Operational: 90% FTEs Tactical: 10% FTEs				

UNIVERSITY OF TWENTE. 7

CONTROL TOWERS FOR SPARE PARTS – INFORMATION

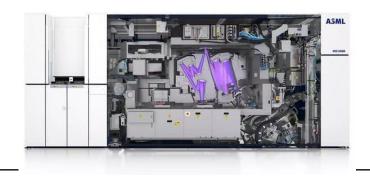
TOPAN ET AL. (2020): SURVEY

Supply and Demand Information Use and Control	OEMs						
Supply and Demand Information Use and Control	A	В	C	D	E		
Getting status update about the external supply (your suppliers') process	3	3	3	2	2		
Having control over external supply process	2	2	2	1	1		
Having prediction models/demand forecasts	3	3	3	2	3		
Using prediction models/forecast in planning operations interventions	3	2	3	1	3		

- The five all have information about their external supply process. Yet, they have limited or no control over their supply process.
 - They often do not use supply information
- Four of the five use demand forecasts for operational interventions.
 - → Machine learning is a powerful tool here!

CONTROL TOWERS FOR SPARE PARTS – INFORMATION

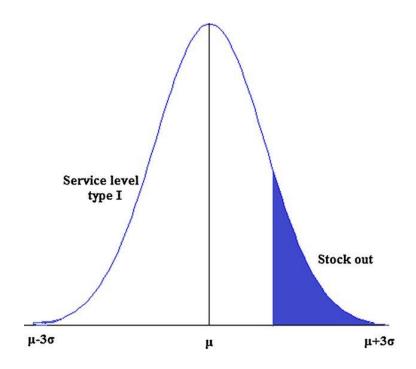
TOPAN ET AL. (2020): SURVEY

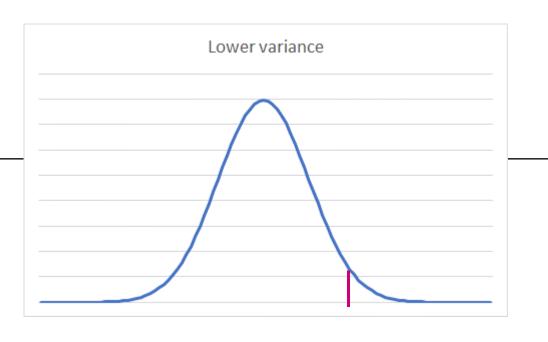

F1	OEMs								
Elements	A	В	C	D	E				
Optimization methods for decision problems	Simple decision rules	Simple decision rules	Simple decision rules	Manual / Simple decision rules (depending on service contracts)	NA				
Demand and supply model	Mix of deterministic and stochastic	Mix of deterministic and stochastic	Mix of deterministic and stochastic	Deterministic	NA				
Planning horizon	Finite	Finite	Finite	Infinite / Finite (depending on service contracts)	NA				

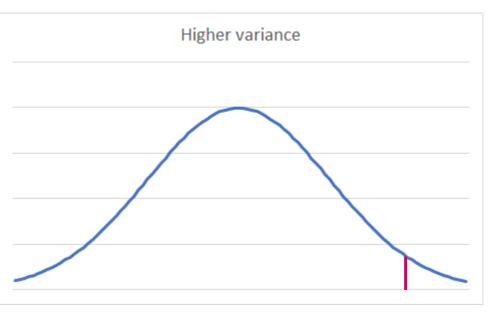
- Operational planning problems are solved by using either simple rules (ad-hoc thresholds) or made manually based on expert knowledge.
- Deterministic? demand and supply models are widely used. The uncertainty of demand and supply, which is crucial in estimating downtime risk, is often neglected.

ADVANCED DEMAND INFORMATION

TOPAN ET AL. (2024): ADI FOR SPARE PARTS

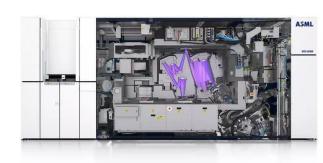

- ASML, a world-leading manufacturer of lithography systems
- Uptime of these systems is critical importance for users/customers.
- Keep spare parts, operate a global inventory network with local warehouses close to customers.
- Spare parts are very expensive and slow moving
 - Price: >50000 Euros, Demand: 1 per 2 years
- Keep inventories at a minimum level, zero if possible.

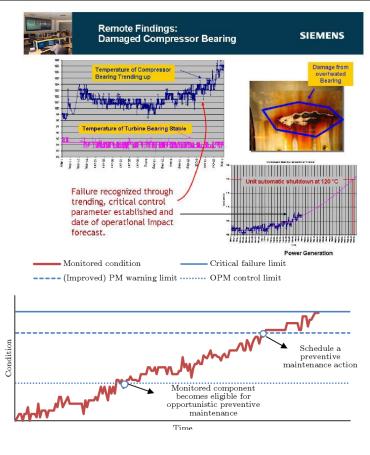



ONE PREDICTIVE CONTROL

HOLDING INVENTORY

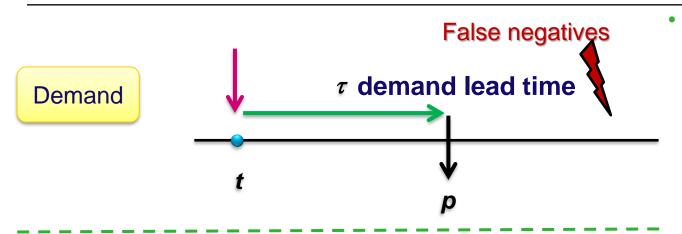
Do you see ways to reduce demand / supply uncertainty using demand info?





ADVANCED DEMAND INFORMATION

CONDITION MONITORING DATA


- ASML / OEMs install condition monitoring systems installed at their customers
 - Sensors
 - Data
 - Prediction models to predict failures and to produce signals/alerts
- This information is collected and used for maintenance planning
- But can we use these signals as demand signals/alerts in planning spare parts supply? ADI?
- If so, how does a predictive adaptive smart control policy look like?
 UNIVERSITY OF TWENTE.

12

p: probability that a signal will ever become a demand realization precision (reliability, accuracy)

$$\frac{TP_i}{TP_i + \mathbf{FP_i}}$$

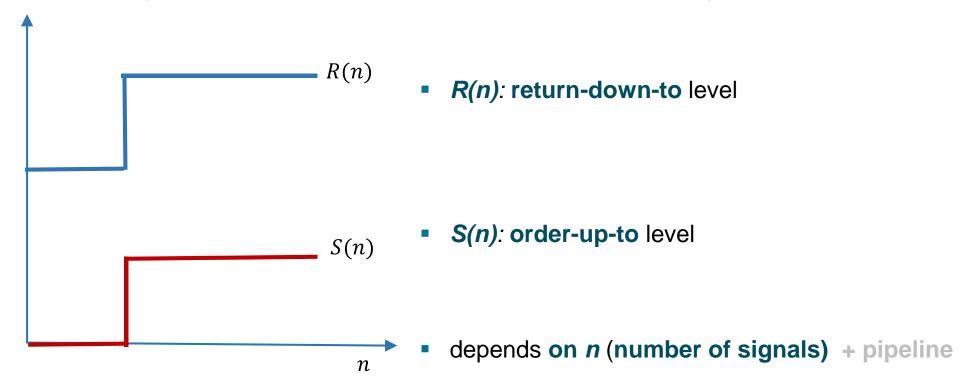
Supply

L supply lead time

t

10 signals, 10 turn out to be a failure → p is 1 ☺

10 failures detected, 100 failures → q = 0.1 ⊗


τ : interval or random duration (geometric distr.) signal stays in the system

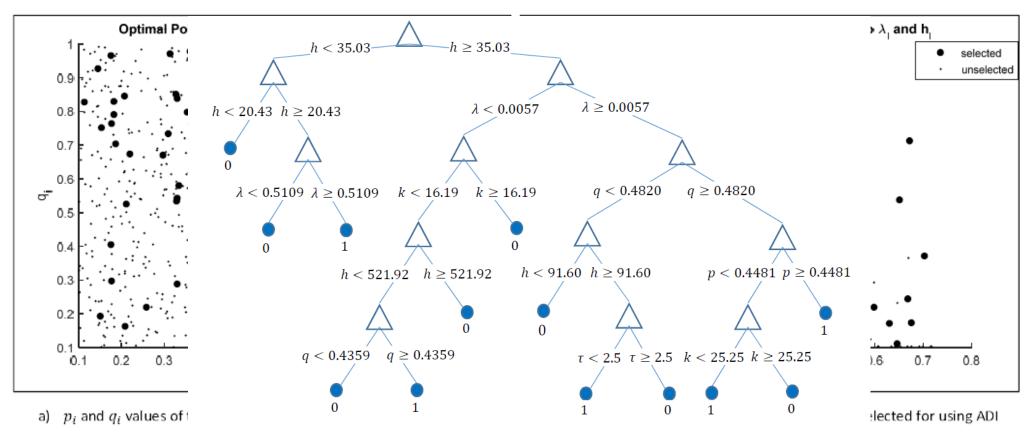
 q: ratio of predicted demand to total demand recall (sensitivity)

$$\frac{TP_i}{TP_i + \textbf{\textit{FN}}_i}$$

STATE DEPENDENT TWO-SIDED POLICY

Optimal policy is a state-dependent two-sided base-stock policy for items with ADI.

For slow movers → keep stock when there is a demand signal and return it if it disappears?


VALUE OF IMPERFECT ADI

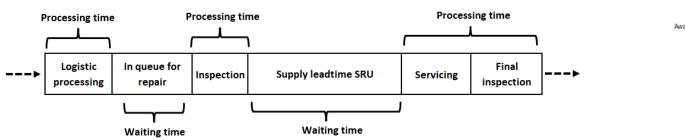
Part	h (€/unit/week)	$[au_l, au_u]$ (week)	λ (unit/week)	p	q	c_r	<i>g_{NoADI}</i> (€/week)	<i>g_{ADINR}</i> (€/week)	g_{ADI} (€/week)	PCR _{ADINR}	PCR _{ADI}
P	2720	[2,6]	0.0188	0.42	0.44	5500	1406.01	1399.69	963.05	0.45%	31.50%
Т	112	[8,12]	0.0600	0.90	0.90	325	248.13	144.37	137.03	41.82%	44.78%
X	152	[0,4]	0.0019	0.45	0.43	400	145.57	142.05	134.47	2.42%	7.63%
W	646	[0,1]	0.0036	0.90	0.50	1400	274.28	274.28	274.28	0.00%	0.00%

- Imperfect ADI yields substantial savings
- Timing of ADI is highly influential on the value of ADI (Demand lead time > Supply lead time)
- Keep inventory when there is a demand signal, if there is no signal don't keep inventory
 and return it back to the central warehouse

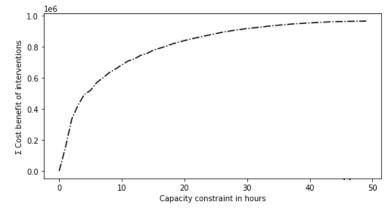
WHICH ITEMS SHOULD WE MONITOR?

• Imperfectness (p,q) is important but logistics-related parameters (demand rate, cost price, penalty cost, lead time) are also very important.

ADVANCE SUPPLY INFO =?



ALIZADEH ET AL. (2022)


- Alert systems generate too many exception messages, e.g., on average 300 -2000 alerts per week.
- Using advance supply information to plan operational interventions proactively.

- Data-driven method (neural networks) + model-based approach (probabilistic model) to support human planners by generating alerts when a supply delay is identified.
- We improve the accuracy of repair time predictions up to 14% reduce intervention costs by 13%.

Do you **monitor supply?** UNIVERSITY OF TWENTE.

FAILURE / USAGE RATE INFO AS DEMAND INFO

FAILURE RATE

- T: first time to failure given that a system (first time) is on operation at time 0
- Cumulative probability distribution: F(t)=P(T≤t)
- Probability density of first failure: f(t)=F'(t)
- Reliability (Survival) function: $R(t) = \bar{F}(t) = 1 F(t)$
- Failure rate:

$$z(t) = f(t)/R(t)$$

$$z(t) \approx \frac{P\{T \le t + \Delta t | T > t\}}{\Delta t}$$

- Failure rate is a key/major input for finding the optimal stock levels
 - \rightarrow usage rate or demand rate λ

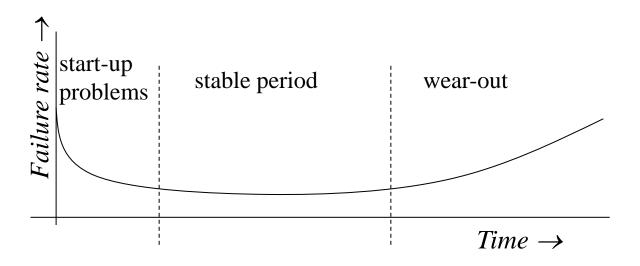
FAILURE RATE

FMECA

Another approach is to forecast usage by using **installed base information** or calculate/collect **ASML's reliability database**.

Item	Paf No	Code No.	Function	Failure mode	Failure	Failure	E. Home office	C	Commuter:	Calab. No.	
Hem	кеј. №0.	Coae No.	runction	r allure mode	mode frequency	rate (10 ⁶ hrs)	Failure effect Immediate Next level* level*		severity level (S)	Criticality (C) $(= \alpha \lambda S)$	Remarks and total criticality for each item
1	2	3	4	5	(α) 6	(え) 7	8 9	10	11	12	13
Tank	Т	TA1/4	Hold water	Warp Leak Burst	0.3 0.4 0.25	0.05	Possibly foul moving parts Catastrophic	Noise Wet floor	0.7 0.7 1.0	0.01 0.014 0.013	Total 0.037
Hot water pipe	P1	Cu/1/2		Warp Leak Burst	0.5 0.4 0.05	0.1	May impede flow Catastrophic	Fills slowly Wet floor	0.1 0.7 0.1	0.005 0.028 0.005	Total 0.038
Cold water pipe	F2	Cu/1/2		Warp Leak Burst	0.3 0.6 0.05	0.05	As above	Fills slowly Wet floor	0.1 0.7 1.0	0.002 0.021 0.002	Total 0.025
Hot water valve	V1	V 124	Control flow of hot water	Leak Burst Seizes shut Seizes open	0.3 0.05 0.5 0.1	1.0	Catastrophic No hot water Cold was Overflow	Wet floor	0.7 1.0 0.4 1.0	0.21 0.05 0.2 0.1	0.56
Cold water valve	V2	V 124	Controls cold water	Leak Burst Seizes shut Seizes open	0.3 0.03 0.5 0.1	1.0	Catastrophic No cold water overflow		0.7 1.0 1.0 1.0	0.21 0.05 0.5 0.1	No cold water Could ruin cloth Total 0.86
Hot and cold connectors (two in series)	C1 C2	CCu/1/2 Ccu/1/2		Leak Burst	0.6 0.3	0.1	Catastrophic	Wet floor	0.7 1.0	0.041 0.03	0.077 each 0.144 together
Drain pipe to pump	P5	Cu/1/2	Carries water away	Leak Burst Warp	0.5 0.3 0.1	0.1	Catstrophic May impede flow	Empties slowly	0.2 0.1 0.1	0.035 0.03 0.001	0.066
Drain connection	C5	Ccu/1/2		Leak Burst	0.9 0.1	1.0	Catastrophic	Wet floor	0.7 1.0	0.63 0.1	0.73
Seal	S2	S/R/15		Leak	1.0	0.1			0.6	0.16	0.16
Door	D	D/128		Warp Break	0.85 0.1	0.1	May leak Flood		0.7 1.0	0.06 0.01	0.07

FAILURE MODES AND EFFECTS ANALYSIS - WORKSHEET

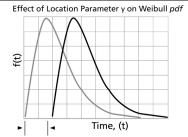

† Next level for this analysis

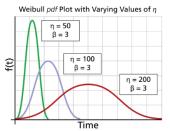
Total criticality

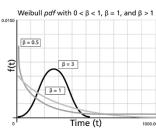
2.69

FAILURE RATE AS DEMAND INFO

BATHTUB CURVE?


- start-up (infant mortality): z(t) decreasing in t (DFR=Decreasing Failure Rate)
- stable period (neutral): z(t)=a (constant)
- wear out: z(t) increasing in t (IFR=Increasing Failure Rate)


FAILURE RATE AS DEMAND INFO


WEIBULL DISTRIBUTION?

Reliability function
$$R(t)$$
:
$$\overline{F}(t) = \begin{cases} 1 & 0 < t \le t_0 \\ -\left(\frac{t-t_0}{\eta}\right)^{\beta} & t > t_0 \end{cases}$$

- Interpretation of parameters:
 - t₀= failure free period (location parameter)
 - η = scale parameter of life time:
 - β = shape parameter; β =1: (shifted) exponential distribution

FAILURES AS DEMAND INFO

WEIBULL DISTRIBUTION

Failure rate function:

$$z(t) = \frac{f(t)}{R(t)} = -\frac{R'(t)}{R(t)} = \frac{\beta}{\eta} \left(\frac{t - t_0}{\eta}\right)^{\beta - 1}$$

- $\beta=1$ \rightarrow constant failure rate: z (t)= λ (constant), $F(t)=1-e^{-\lambda t}$ (Weibull with $\beta=1$ and t0=0)
- β>1 → wear out: z (t) is an increasing function of the time t: Increasing Failure Rate (IFR)
- β<1 → running in: z (t) is a decreasing function of the time t: Decreasing Failure rate (DFR)</p>


UNIVERSITY OF TWENTE.

EXAMPLE A VERY EXPENSIVE SLOW-MOVING SKU

EFFECT OF BATHTUB CURVE

■ Demand rate = 0.025, regular lead time 2 weeks, emergency lead time = 48 hours

downtime = 2 hours, roughly fill rate = 96%, Holding cost 1000 Euros per week

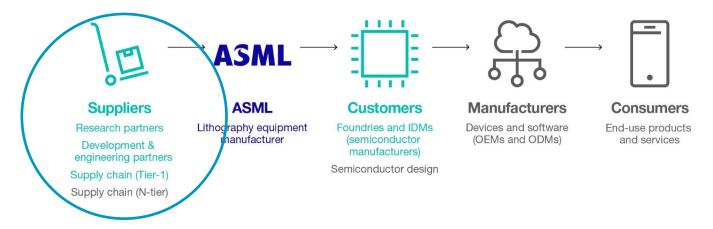
CONCLUSIONS

AWARENESS OF VALUE OF INFORMATION

- Despite the imperfectness, demand info is quite promising for practice → High gain
- Imperfectness of demand info sometimes even less important than logistics-related parameters such as demand rate, cost price, penalty cost, lead time.
- There are ways to model demand info
- Policy: Dynamic two-sided policy: Keep stock only when needed for slow moving items
- Future research
 - Implementing in practice, also to multiple locations & customers
 - Heuristic policy will contribute significantly

FUTURE OF ADI

FOCUS ON COLLABORATION WITH CUSTOMERS & SUPPLIER: BONUS IS SUSTAINABILITY


- Data sharing → collaboration → distributed / decentralized control towers
 - Technical challenges
- How to make this useful for practice for human?
 - Business and social challenges
- Dynamic policies/solutions to reduce downtime (resilience) but also reduce carbon footprint (sustainability) → more data driven approaches

What **challenges** do you see in using **data?**

INFORMATION SHARING

FOCUS ON SUPPLIERS

SME+/ MKBs + manufacturers

- More than the half of the high-tech industry
- Absorb the burden the most
- Need resilience the most

→ CONTROL TOWERS FOR SME+s

SME+s be active players in their supply chains

Thank you for listening!

Questions?