

Spare Parts Inventory Control under System Availability Constraints

Geert-Jan van Houtum Professor of Maintenance and Reliability

International Series in Operations Research & Management Science

Geert-Jan van Houtum Bram Kranenburg

Spare Parts
Inventory Control
under System
Availability
Constraints

TU/e

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Service supply chain: Example

Planning levels

Aggregate information

Long horizon

Low frequency

Detailed information
Short horizon
High frequency

Challenge

Given the SLA's in service contracts, requirements For other demand streams, and the design of the network:

- How much to keep on stock of each SKU?
- In which locations?
- When to apply lateral and emergency shipments?
- How to deal with different customer classes?

•

CONTENTS

- 1. Introduction
- 2. System vs. item approach
- 3. How to create pooling effects?
- 4. Status of system-oriented models
- 5. New challenges

2. System vs. item approach

EXAMPLE

SKU	Demand	Price	Leadtime
	(per yr)	(Eur)	(wks)
1	2,5	1000	1
2	1,3	4000	1
3	0,7	14000	1
4	0,3	20500	1
5	0,1	34000	1

Inv. Holding cost rate: 0.4% per wk

item approach

SKU	Demand (per yr)	Price (Eur)	Leadtime (wks)	Base stock
1	2,5	1000	1	5
2	1,3	4000	1	4
3	0,7	14000	1	3
4	0,3	20500	1	2
5	0,1	34000	1	1

Inv. Holding cost rate: 0.4% per wk

Aggr. fill rate: 94.8%

Costs: 616 Eur/wk

System approach

SKU	Demand	Price	Leadtime	Base
	(per yr)	(Eur)	(wks)	stock
1	2,5	1000	1	?
2	1,3	4000	1	?
3	0,7	14000	1	?
4	0,3	20500	1	?
5	0,1	34000	1	?
			Aggr. fill rate:	

Inv. Holding cost rate: 0.4% per wk

Costs: ... Eur/wk

System approach

SKU	Demand	Price	Leadtime	Base
	(per yr)	(Eur)	(wks)	stock
1	2,5	1000	1	9
2	1,3	4000	1	5
3	0,7	14000	1	3
4	0,3	20500	1	1
5	0,1	34000	1	0

Inv. Holding cost rate: 0,4% per wk

Aggr. fill rate: 95.9%

Costs: 417 Eur/wk

3. How to create pooling effects?

How to create pooling effects?

Use of:

- Lateral and/or emergency shipments
- Joint inventories in case of customer differentiation,
- Commonality

Case: Lateral shipments

Problem

Given:

- OEM of high-tech systems
- 19 local stockpoints
- 1451 SKU's (expensive till cheap)
- Use of lateral shipments at the operational level
- Costs: Inventory holding and transportation costs

Question:

How much to stock? (tactical decision problem)

Developed: Inventory model with lateral shipments

- Model with multiple local stockpoints
- Integral inventory control
- Multi-item setting!

Comparison

- Scenario 1 (cf. what was done until 2005):
 - No lateral shipments are taken into account at <u>tactical</u> <u>planning level</u>
 - But, lateral shipments are used at operational level
- Scenario 2:
 - Same, but lateral shipments are taken into account at tactical planning level

Comparison (2)

- Scenario 1 (cf. what was done until 2005):
 - No lateral shipments are taken into account at <u>tactical</u> <u>planning level</u>
 - But, lateral transshipments are used at operational level
- Scenario 2:
 - Same, but lateral transshipments are taken into account at tactical planning level

=> Scenario 2 is 32% cheaper than scenario 1

Additional remarks

- Algorithm has been implemented, and is in use since 2005.
- Results:
 - slight decrease in inventory investment
 - strongly improved service levels
 - under increased size of installed base

4. Status of system-oriented methods

History

Arsenal of Venice:
Use of **standard parts** for warships

Honoré Blanc:

- French gunsmith
- Musket assembled from interchangeable components
- Adopted by US Government (Jefferson)

Craig Sherbooke:

- METRIC model
- Paper in Operations Research
- Worked at The Rand Corporation

2015

Spare parts books

Book Sherbrooke:

- Motivation: Military world
- Tactical planning
- System approach
- METRIC Model
- Multi-indenture

Implemented in commercial software packages

Book Muckstadt:

2005

Motivation: Military world

Analysis and Algorithms for

Service Parts

Supply Chains

- Tactical planning
- System approach
- METRIC Model
- Multi-indenture
- Lateral transsh. cf.
 Axsäter [1990] (full pooling, no emerg. sh.)
- One chapter on operational planning

Book Van Houtum and Kranenburg:

Geert-Jan van Houtum Bram Kranenburg

pare Parts

under System

Availability Constraints

Inventory Control

♠ Springer

- Motivation: High-tech industry
- Tactical planning
- System approach
- METRIC Model
- Multi-indenture
- Emergency shipments
- Customer differentiation
- Lateral transshipments

Example: Available building block

Example: Available building block

How to solve the full problem?

Answer

Combine and couple existing building blocks

See work of Martijn van Aspert for ASML (part of NWO-TOP project)

Users of system-oriented methods

- ASML: For local warehouses
- Océ: For field stock (cars and QRS's)
- IBM: Via Neighborhood
- Thales: Uses Inventri
- Users of Xelus and MCA Solutions (without lateral transshipments)
- US Coast Guard
- ...

5. New challenges

Planning levels

Studied topics

- Predictive spare parts supply
 - Even unreliable predictions can lead to significant savings (study by Topan et al., 2018)
- Predictive maintenance (see e.g. PhD work of Zhu)
 - Many different models for components
 - Required reaction times may differ per component
 - Interaction with production schemes of customers
- Dynamic control to meet SLA's during finite-term contracts (PhD work of Lamghari)
- Uncertainty in failure rates (projects by Javanmardi and Van Wingerden)

Overall approach in practice

Control tower !!!

- Needs all relevant information
- Real-time decision making
 - Fast, simple algorithms
 - Based on most relevant data
- Type of research:
 - Heuristics
 - Comparison via simulation

Discussion

- Who of you uses a system-oriented approach?
- Who of you already exploits "new data"?

