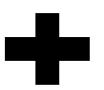


Identifying business cases for 3D printing in service logistics

To print? Or not to print?
Nils Knofius & Kaveh Alizadeh
Date Sep 26th, 2018

UNIVERSITY OF TWEENTE.

The information in this presentation is proprietary and confidential and shall not be disclosed to or used by a third party unless specifically authorised by the relevant GKN plc group company.



A New Business Model in Service Logistics?

Bottom-up Approach The common practice

UNIVERSITY OF TWENTE.

Maybe we can print this part. The guys from the engineering department say it is feasible.

Great, another demonstrator... but does it help our service operations?

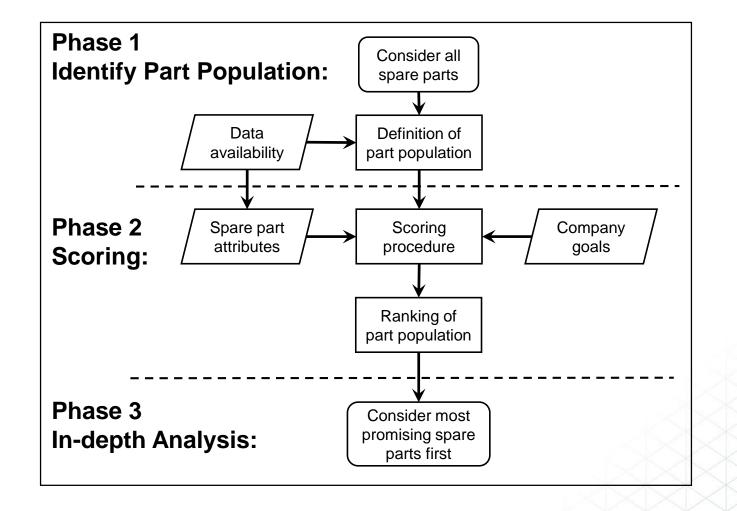
Bottom-up Approach Often does not work for service logistics

UNIVERSITY OF TWENTE.

Maybe we can print this part. The guys from the engineering department say it is feasible.

2. "Low hanging fruits" are overlooked in large spare parts assortment

3. Disappointing cases of 3D printing for service logistics


Great, another demonstrator... but does it help our service operations?

Top-Down Approach An Alternative

Top-Down Approach: Phase 1

UNIVERSITY OF TWENTE.

Considerations:

- Larger Spare Part Assortment vs. Higher Data Consistency
- Data Cleaning

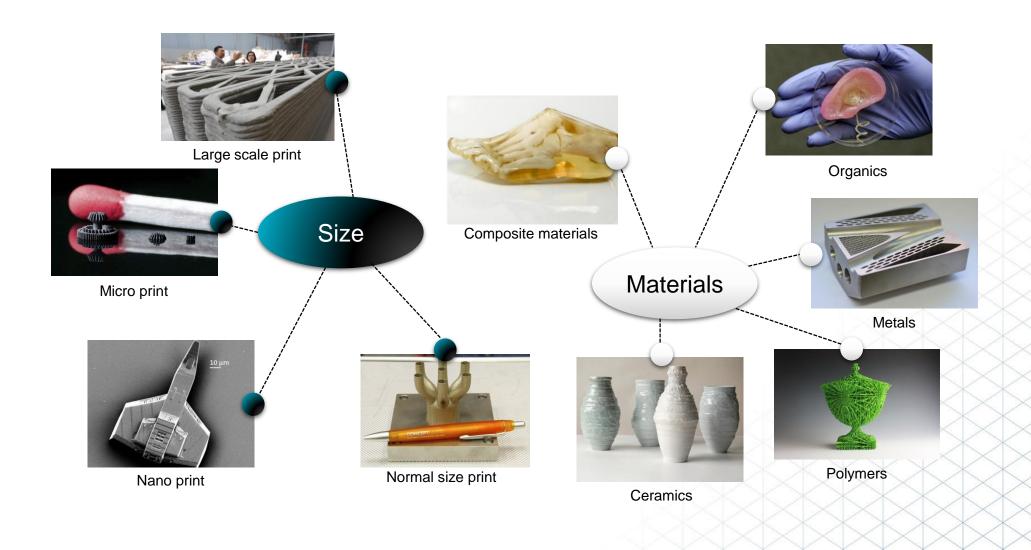
Output Phase 1:

Attributes	Item 1	Item 2	Item 3	
Type of part (Electronics, Metals, Plastics)	Е	Р	M	
Part size (dm³)	1	3	4	
Resupply lead time (days)	21	50	35	
Customer order lead time (days)	2	5	1	
Design ownership (Yes/No)	Υ	N	N	
Order /Manufacturing costs (Teuro)	5	15	1	
:	÷	:	÷	:

Example:

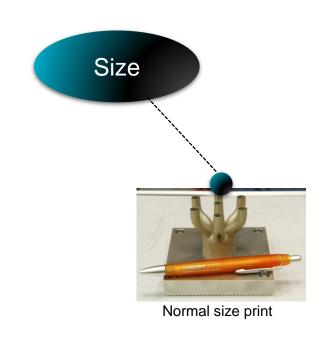
~400,000 Spare parts

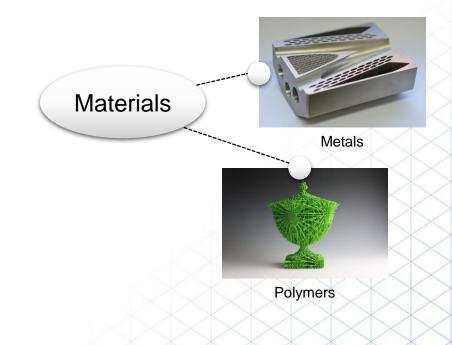
35,933 Spare parts



Top-Down Approach: Phase 2 Technological Constraints

UNIVERSITY OF TWENTE.





Top-Down Approach: Phase 2 Technological Constraints

UNIVERSITY OF TWENTE.

Top-Down Approach: Phase 2 How to Measure Technological Feasibility?

UNIVERSITY OF TWENTE.

Use basic characteristics that give insights about:

- Material category (often encoded in part id, description etc.)
- Size (number of sub-components, storage type etc.)

Output:

Attributes	Value	Score	Weight	Weighted score
Materials (Metals, Plastics, etc.)	М	-	-	Fulfilled
Size (dm³)	0,5	-	-	Fulfilled

Go\No-Go Attributes Example:

35,933 Spare parts

6,190 Spare parts

Top-Down Approach: Phase 2 How do we identify economic value?

UNIVERSITY OF TWENTE.

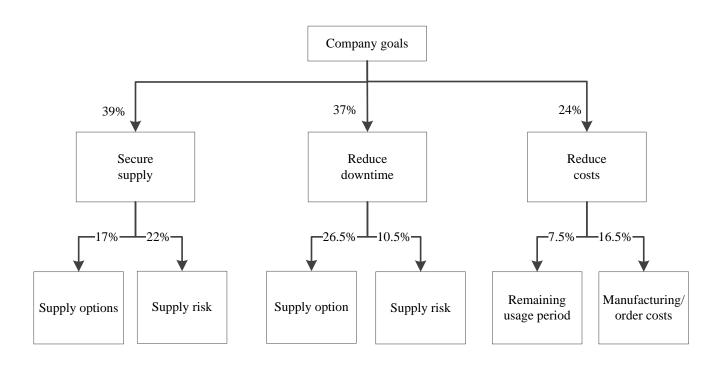
		Improvement potential with 3D printing						
		Reduce manufacturing/ order costs	Reduce direct part usage costs	Reduce safety stock costs	Improve supply chain responsiveness	Postponement	Temporary fix	Reduce effect of supply disruptions
	Demand rate	Low		Low		Low		
attribute	Resupply lead time			Long	Long	Long	Long	
	Remaining usage period		Long					
re part	Number of supply options	Few			Few			Few
Spare							. 1	
	·							

Top-Down Approach: Phase 2 How to calculate score?

Scoring of spare part attributes:

- Different options, e.g., normalize item values between 0 and 1
- Protect against data pollution by excluding extreme values

Output:


Attributes	Value	Score	Weight	Weighted score
Materials (Metals, Plastics, etc.)	M	-	-	Fulfilled
Size (dm³)	0,5	-	-	Fulfilled
Supply options (#)	2	0,32		
Demand (parts/year)	15	0,105		
Remaining usage period (years)	5	0,11		
Resupply lead time (days)	48	0,175		

Top-Down Approach: Phase 2 How do we regard company goals?

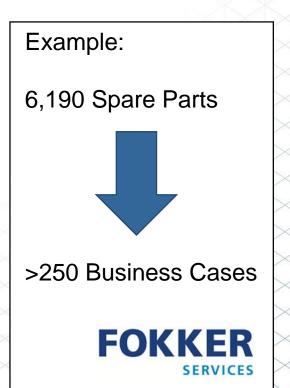
UNIVERSITY OF TWENTE.

Use pairwise-comparison interview technique (Analytical Hierarchy Process)

- Reduces decision complexity and improves decision consistency
- Use to engage management

Top-Down Approach: Phase 2 Calculate the weighted score

UNIVERSITY OF TWENTE.

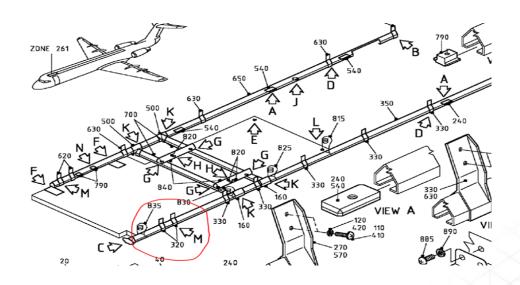


Output Phase 2:

Attributes	Value	Score	Weight	Weighted score
Materials (Metals, Plastics, etc.)	М	-	-	Fulfilled
Size (dm³)	0,5	-	-	Fulfilled
Supply options (#)	2	0,32	43,5%	0,1392
Demand (parts/year)	15	0,105	32,5%	0,034125
Remaining usage period (years)	5	0,11	7,5%	0,0825
Resupply lead time (days)	48	0,175	16,5%	0,028875
			Total:	0,2847

Next Steps:

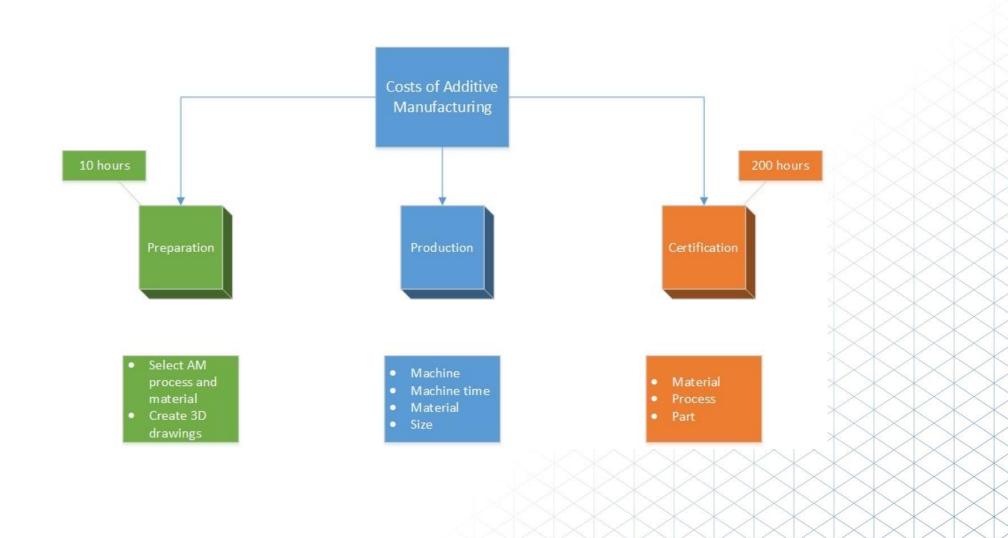
- Use spare parts scores to rank the analyzed spare parts assortment.
- Analyze best scoring spare parts first


First case study: ceiling bracket Demonstrator selection

UNIVERSITY OF TWENTE.

Reasons for selection:

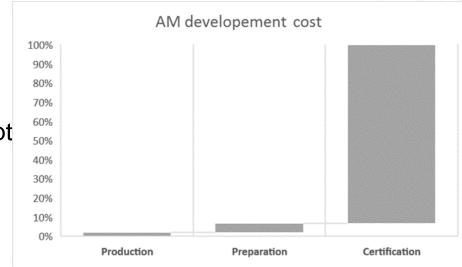
- Immediate need (because of obsolescence)
- Reasonable fit with the quick scan
- Provided sufficient learning potential (somewhat complex geometry, subject to some loads, used in the interior)
- Material Ultem 9085 was suitable for 3D printing

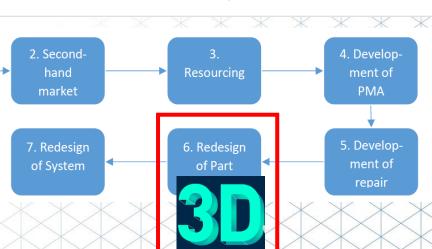


First case study: ceiling bracket Business case

First case study: ceiling bracket Business case

UNIVERSITY OF TWENTE.



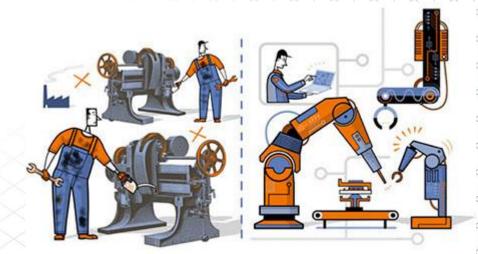

Major obstacle:

- Certification, Certification, ...
- Certification contributes to > 90% of total cost
- AM is economically beneficial in case of supply disrupt should only be considered as one of the last resorts

Conclusion:

 AM is economically beneficial in case of supply disruptions BUT should only be considered as one of the last resorts

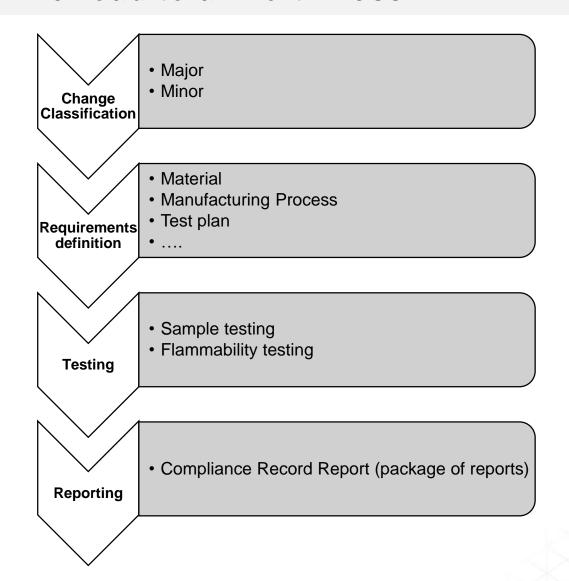
First case study: Certification aspects The road to airworthiness

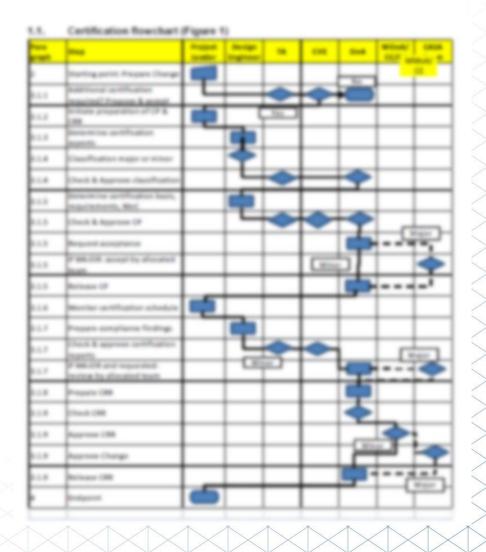

UNIVERSITY OF TWENTE.

- Authorities request to prove airworthiness by:
 - Identicality (compare processes, materials, specifications, tolerances and dimensions)

or

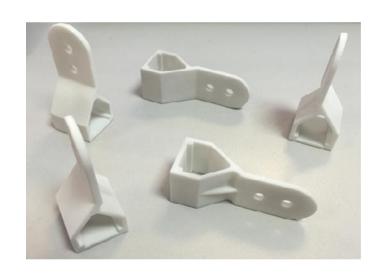
- Test and computation (Strength and failure tests)
- Caveat:
 - In case of AM, <u>process</u> is different which rules out identicality unless.....





First case study: Certification aspects The road to airworthiness

UNIVERSITY OF TWENTE.


Second case study: Production tooling Let's avoid certification costs

UNIVERSITY OF TWENTE.

Reasoning:

- Solving obsolescence cases where tooling is not available
- Avoid excessive certification for spares when printing directly
- Avoid high initial investment for conventional tools and molds

Second case study: Production tooling Let's avoid certification costs

UNIVERSITY OF TWENTE.

Advantages:

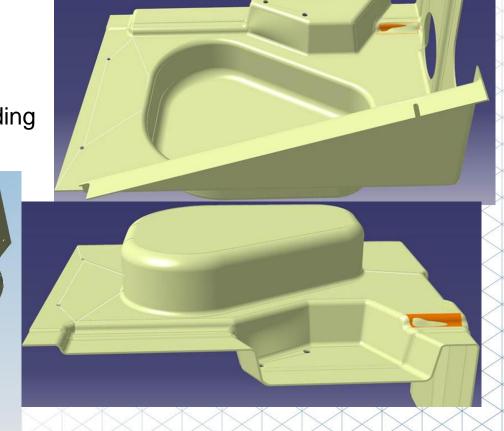
- Limited (qualification) requirements
- Possibility to change the tooling material (switch from metal to plastic is highly desirable)
- Suitable for low demand volume parts

Dis-advantages:

- Unpredictable tooling failure behaviour
- Difficult to get the parts manufacturer on board to switch from tooling production technique

Second case study: Production tooling Let's avoid certification costs

UNIVERSITY OF TWENTE.



Application potential:

Vacuum forming & injection molding

Current case:

- Vacuum formed floor cover
- Complex design
- Switching from a metal to plastic (Ultem1010) molding

Third case study: SRU printing Mitigate the certification costs

UNIVERSITY OF TWENTE.

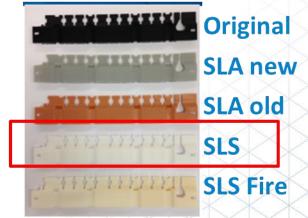
Reasoning:

- (Often) Long lead times
- Unpredictable and low demand
- High Out-of-Stock costs (workstopage because of unavailability of a single SRU)
- Possibility for (Inhouse) production at limited cost
- Less stringent certification requirements

Expectations:

- Introduce AM as a viable SRU sourcing/manufacturing method
- Reevaluate our stocking strategy considering AM
- Reduce working capital while ensuring high availability (what else?)

Project is still in progress......


Third case study: SRU printing Proven concept

UNIVERSITY OF TWENTE.

An example of an already implemented case: PCB holder

Obsolescence → No longer available & expensive to replace

Next steps: The journey ahead Where to go from here?

- Finish SRU business potential
- Workout & Implement some more cases
- Explore further application of AM such as repairs, hybrid production or
- Further pave the AM supply network
- Catch the next SINTAS train???

